Single-cell protein profiling defines cell populations associated with triple-negative breast cancer aggressiveness

. 2023 Jun ; 17 (6) : 1024-1040. [epub] 20230125

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36550781

Grantová podpora
P30 CA008748 NCI NIH HHS - United States

Triple-negative breast cancer (TNBC) is an aggressive and complex subtype of breast cancer that lacks targeted therapy. TNBC manifests characteristic, extensive intratumoral heterogeneity that promotes disease progression and influences drug response. Single-cell techniques in combination with next-generation computation provide an unprecedented opportunity to identify molecular events with therapeutic potential. Here, we describe the generation of a comprehensive mass cytometry panel for multiparametric detection of 23 phenotypic markers and 13 signaling molecules. This single-cell proteomic approach allowed us to explore the landscape of TNBC heterogeneity, with particular emphasis on the tumor microenvironment. We prospectively profiled freshly resected tumors from 26 TNBC patients. These tumors contained phenotypically distinct subpopulations of cancer and stromal cells that were associated with the patient's clinical status at the time of surgery. We further classified the epithelial-mesenchymal plasticity of tumor cells, and molecularly defined phenotypically diverse populations of tumor-associated stroma. Furthermore, in a retrospective tissue-microarray TNBC cohort, we showed that the level of CD97 at the time of surgery has prognostic potential.

Zobrazit více v PubMed

Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple‐negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13:674–90. 10.1038/nrclinonc.2016.66 PubMed DOI PMC

Malorni L, Shetty PB, De Angelis C, Hilsenbeck S, Rimawi MF, Elledge R, et al. Clinical and biologic features of triple‐negative breast cancers in a large cohort of patients with long‐term follow‐up. Breast Cancer Res Treat. 2012;136:795–804. 10.1007/s10549-012-2315-y PubMed DOI PMC

Bianchini G, De Angelis C, Licata L, Gianni L. Treatment landscape of triple‐negative breast cancer – expanded options, evolving needs. Nat Rev Clin Oncol. 2021;19:91–113. 10.1038/s41571-021-00565-2 PubMed DOI

Garrido‐Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple‐negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9:176–98. 10.1158/2159-8290.CD-18-1177 PubMed DOI PMC

Kvokackova B, Remsik J, Jolly MK, Soucek K. Phenotypic heterogeneity of triple‐negative breast cancer mediated by epithelial‐mesenchymal plasticity. Cancers (Basel). 2021;13:2188. 10.3390/cancers13092188 PubMed DOI PMC

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial‐mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15. 10.1016/j.cell.2008.03.027 PubMed DOI PMC

Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10:717–28. 10.1016/j.stem.2012.05.007 PubMed DOI

Jolly MK, Ware KE, Gilja S, Somarelli JA, Levine H. EMT and MET: necessary or permissive for metastasis? Mol Oncol. 2017;11:755–69. 10.1002/1878-0261.12083 PubMed DOI PMC

Chao YL, Shepard CR, Wells A. Breast carcinoma cells re‐express E‐cadherin during mesenchymal to epithelial reverting transition. Mol Cancer. 2010;9:179. 10.1186/1476-4598-9-179 PubMed DOI PMC

Bierie B, Pierce SE, Kroeger C, Stover DG, Pattabiraman DR, Thiru P, et al. Integrin‐beta4 identifies cancer stem cell‐enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci USA. 2017;114:E2337–46. 10.1073/pnas.1618298114 PubMed DOI PMC

Kroger C, Afeyan A, Mraz J, Eaton EN, Reinhardt F, Khodor YL, et al. Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci USA. 2019;116:7353–62. 10.1073/pnas.1812876116 PubMed DOI PMC

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 2020;5:8. 10.1038/s41392-020-0110-5 PubMed DOI PMC

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37. 10.1038/nm.3394 PubMed DOI PMC

Bejarano L, Jordao MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11:933–59. 10.1158/2159-8290.CD-20-1808 PubMed DOI

Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single‐cell RNA‐seq. Nat Commun. 2018;9:3588. 10.1038/s41467-018-06052-0 PubMed DOI PMC

Pal B, Chen Y, Vaillant F, Capaldo BD, Joyce R, Song X, et al. A single‐cell RNA expression atlas of normal, preneoplastic and tumorigenic states in the human breast. EMBO J. 2021;40:e107333. 10.15252/embj.2020107333 PubMed DOI PMC

Wu SZ, Roden DL, Wang C, Holliday H, Harvey K, Cazet AS, et al. Stromal cell diversity associated with immune evasion in human triple‐negative breast cancer. EMBO J. 2020;39:e104063. 10.15252/embj.2019104063 PubMed DOI PMC

Chung W, Eum HH, Lee HO, Lee KM, Lee HB, Kim KT, et al. Single‐cell RNA‐seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun. 2017;8:15081. 10.1038/ncomms15081 PubMed DOI PMC

Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A single‐cell atlas of the tumor and immune ecosystem of human breast cancer. Cell. 2019;177:1330–45. 10.1016/j.cell.2019.03.005.e18. PubMed DOI PMC

Chevrier S, Crowell HL, Zanotelli VRT, Engler S, Robinson MD, Bodenmiller B. Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 2018;6:612–20. 10.1016/j.cels.2018.02.010.e5. PubMed DOI PMC

Leelatian N, Sinnaeve J, Mistry AM, Barone SM, Brockman AA, Diggins KE, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. Elife. 2020;9:e56879. 10.7554/eLife.56879 PubMed DOI PMC

R Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021. [cited 2023 Jan 3]. Available from: https://www.R-project.org/

Van der Maaten L, Hinton G. Visualizing data using t‐SNE. J Mach Learn Res. 2008;9:2579–605.

Van Gassen S, Callebaut B, Van Helden MJ, Lambrecht BN, Demeester P, Dhaene T, et al. FlowSOM: using self‐organizing maps for visualization and interpretation of cytometry data. Cytometry A. 2015;87:636–45. 10.1002/cyto.a.22625 PubMed DOI

Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43:W566–70. 10.1093/nar/gkv468 PubMed DOI PMC

Allison KH, Hammond MEH, Dowsett M, McKernin SE, Carey LA, Fitzgibbons PL, et al. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J Clin Oncol. 2020;38:1346–66. 10.1200/JCO.19.02309 PubMed DOI

Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple‐negative breast cancer. Clin Cancer Res. 2015;21:1688–98. 10.1158/1078-0432.CCR-14-0432 PubMed DOI PMC

Kim S, Moon BI, Lim W, Park S, Cho MS, Sung SH. Feasibility of classification of triple negative breast cancer by immunohistochemical surrogate markers. Clin Breast Cancer. 2018;18:e1123–32. 10.1016/j.clbc.2018.03.012 PubMed DOI

Zhao S, Ma D, Xiao Y, Li XM, Ma JL, Zhang H, et al. Molecular subtyping of triple‐negative breast cancers by immunohistochemistry: molecular basis and clinical relevance. Oncologist. 2020;25:e1481–91. 10.1634/theoncologist.2019-0982 PubMed DOI PMC

Remsik J, Fedr R, Navratil J, Bino L, Slabakova E, Fabian P, et al. Plasticity and intratumoural heterogeneity of cell surface antigen expression in breast cancer. Br J Cancer. 2018;118:813–9. 10.1038/bjc.2017.497 PubMed DOI PMC

Keam B, Im SA, Lee KH, Han SW, Oh DY, Kim JH, et al. Ki‐67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res. 2011;13:R22. 10.1186/bcr2834 PubMed DOI PMC

Urru SAM, Gallus S, Bosetti C, Moi T, Medda R, Sollai E, et al. Clinical and pathological factors influencing survival in a large cohort of triple‐negative breast cancer patients. BMC Cancer. 2018;18:56. 10.1186/s12885-017-3969-y PubMed DOI PMC

Zhu X, Chen L, Huang B, Wang Y, Ji L, Wu J, et al. The prognostic and predictive potential of Ki‐67 in triple‐negative breast cancer. Sci Rep. 2020;10:225. 10.1038/s41598-019-57094-3 PubMed DOI PMC

Lu H, Clauser KR, Tam WL, Frose J, Ye X, Eaton EN, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105–17. 10.1038/ncb3041 PubMed DOI PMC

Donnenberg VS, Donnenberg AD, Zimmerlin L, Landreneau RJ, Bhargava R, Wetzel RA, et al. Localization of CD44 and CD90 positive cells to the invasive front of breast tumors. Cytometry B Clin Cytom. 2010;78:287–301. 10.1002/cyto.b.20530 PubMed DOI PMC

Keren L, Bosse M, Marquez D, Angoshtari R, Jain S, Varma S, et al. A structured tumor‐immune microenvironment in triple negative breast cancer revealed by multiplexed ion beam imaging. Cell. 2018;174:1373–87. 10.1016/j.cell.2018.08.039.e19. PubMed DOI PMC

Wu SZ, Al‐Eryani G, Roden DL, Junankar S, Harvey K, Andersson A, et al. A single‐cell and spatially resolved atlas of human breast cancers. Nat Genet. 2021;53:1334–47. 10.1038/s41588-021-00911-1 PubMed DOI PMC

Focke CM, Burger H, van Diest PJ, Finsterbusch K, Glaser D, Korsching E, et al. Interlaboratory variability of Ki67 staining in breast cancer. Eur J Cancer. 2017;84:219–27. 10.1016/j.ejca.2017.07.041 PubMed DOI

Nielsen TO, Leung SCY, Rimm DL, Dodson A, Acs B, Badve S, et al. Assessment of Ki67 in breast cancer: updated recommendations from the international Ki67 in breast cancer working group. J Natl Cancer Inst. 2021;113:808–19. 10.1093/jnci/djaa201 PubMed DOI PMC

Aust G, Zheng L, Quaas M. To detach, migrate, adhere, and metastasize: CD97/ADGRE5 in cancer. Cell. 2022;11:1538. 10.3390/cells11091538 PubMed DOI PMC

Tian H, Chen Y, Zhao JG, Liu DR, Gong WH, Chen L, et al. Effects of targeted CD97 immune epitopes small interference RNA on cellular biological behaviors in MDA‐MB231 malignant breast cancer cell line. Am J Transl Res. 2017;9:4640–51. PubMed PMC

Park IA, Hwang SH, Song IH, Heo SH, Kim YA, Bang WS, et al. Expression of the MHC class II in triple‐negative breast cancer is associated with tumor‐infiltrating lymphocytes and interferon signaling. PLoS One. 2017;12:e0182786. 10.1371/journal.pone.0182786 PubMed DOI PMC

Stewart RL, Matynia AP, Factor RE, Varley KE. Spatially‐resolved quantification of proteins in triple negative breast cancers reveals differences in the immune microenvironment associated with prognosis. Sci Rep. 2020;10:6598. 10.1038/s41598-020-63539-x PubMed DOI PMC

Poma P, Labbozzetta M, D'Alessandro N, Notarbartolo M. NF‐kappaB is a potential molecular drug target in triple‐negative breast cancers. OMICS. 2017;21:225–31. 10.1089/omi.2017.0020 PubMed DOI

Smith SM, Lyu YL, Cai L. NF‐kappaB affects proliferation and invasiveness of breast cancer cells by regulating CD44 expression. PLoS One. 2014;9:e106966. 10.1371/journal.pone.0106966 PubMed DOI PMC

Liu X, Li J, Cadilha BL, Markota A, Voigt C, Huang Z, et al. Epithelial‐type systemic breast carcinoma cells with a restricted mesenchymal transition are a major source of metastasis. Sci Adv. 2019;5:eaav4275. 10.1126/sciadv.aav4275 PubMed DOI PMC

Sikandar SS, Kuo AH, Kalisky T, Cai S, Zabala M, Hsieh RW, et al. Role of epithelial to mesenchymal transition associated genes in mammary gland regeneration and breast tumorigenesis. Nat Commun. 2017;8:1669. 10.1038/s41467-017-01666-2 PubMed DOI PMC

Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, et al. Single‐cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10:1330–51. 10.1158/2159-8290.CD-19-1384 PubMed DOI

Pelon F, Bourachot B, Kieffer Y, Magagna I, Mermet‐Meillon F, Bonnet I, et al. Cancer‐associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat Commun. 2020;11:404. 10.1038/s41467-019-14134-w PubMed DOI PMC

Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer‐associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol. 2020;62:166–81. 10.1016/j.semcancer.2019.08.004 PubMed DOI

Engelbrecht LK, Twigger A‐J, Ganz HM, Gabka CJ, Bausch AR, Lickert H, et al. A strategy to address dissociation‐induced compositional and transcriptional bias for single‐cell analysis of the human mammary gland. bioRxiv. 2021. 10.1101/2021.02.11.430721. [PREPRINT]. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...