Forming Homogeneous Three-Dimensional Structures from Discrete Silica Microspheres Using Sub/Supercritical Water

. 2024 Aug 14 ; 16 (32) : 42873-42883. [epub] 20240731

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39086239

A novel technique for producing highly uniform structures from silica microspheres has been developed and tested. It is based on exploiting the temperature- and pressure-dependent solvent properties of sub/supercritical water toward silicon dioxide. The initial concept aimed to create a "hybrid" capillary chromatographic column on the border between a packed and a monolithic column that would combine the benefits of both. The resultant method that integrates dissolution and coalescence in a continuous process enabled the production of a range of permeable columns with high efficiency and varying sizes. Their internal structures were examined using scanning electron microscopy and characterized using microHPLC chromatography. The structures produced using this method may have diverse applications beyond the scope of analytical chemistry. They prove useful in scenarios where high pressure is necessary because of the high hydraulic resistance of small particles and/or the passing medium with a high flow rate. A simple test of a bridged-microsphere monolithic column and a discrete microsphere-packed column, both after chemical modification to the C18 stationary phase, indicated superior performance of the new type of monolithic columns.

Zobrazit více v PubMed

Handbook of Porous Materials; Gitis V., Ed.; World Scientific, 2021.

Guiochon G. Monolithic columns in high-performance liquid chromatography. Journal of Chromatography A 2007, 1168 (1–2), 101–168. 10.1016/j.chroma.2007.05.090. PubMed DOI

Tanaka N.; McCalley D. V. Core-Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal. Chem. 2016, 88 (1), 279–298. 10.1021/acs.analchem.5b04093. PubMed DOI

Svec F.; Huber C. G. Monolithic materials - Promises, challenges, achievements. Anal. Chem. 2006, 78 (7), 2100–2107. 10.1021/ac069383v. PubMed DOI

Unger K. K.; Skudas R.; Schulte M. M. Particle packed columns and monolithic columns in high-performance liquid chromatography-comparison and critical appraisal. Journal of Chromatography A 2008, 1184 (1–2), 393–415. 10.1016/j.chroma.2007.11.118. PubMed DOI

Svec F.; Frechet J. M. J. Continuous Rods of Macroporous Polymer as High-Performance Liquid-Chromatography Separation Media. Anal. Chem. 1992, 64 (7), 820–822. 10.1021/ac00031a022. PubMed DOI

Minakuchi H.; Nakanishi K.; Soga N.; Ishizuka N.; Tanaka N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem. 1996, 68 (19), 3498–3501. 10.1021/ac960281m. PubMed DOI

Núñez O.; Nakanishi K.; Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography. Journal of Chromatography A 2008, 1191 (1–2), 231–252. 10.1016/j.chroma.2008.02.029. PubMed DOI

Ou J. J.; Liu Z. S.; Wang H. W.; Lin H.; Dong J.; Zou H. F. Recent development of hybrid organic-silica monolithic columns in CEC and capillary LC. Electrophoresis 2015, 36 (1), 62–75. 10.1002/elps.201400316. PubMed DOI

Nakanishi K.; Tanaka N. Sol-gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc. Chem. Res. 2007, 40 (9), 863–873. 10.1021/ar600034p. PubMed DOI

Kennedy G. C. A Portion of the System Silica-Water. Economic Geology 1950, 45 (7), 629–653. 10.2113/gsecongeo.45.7.629. DOI

Anderson G. M.; Burnham C. W. Solubility of Quartz in Supercritical Water. Am. J. Sci. 1965, 263 (6), 494.10.2475/ajs.263.6.494. DOI

Fournier R. O.; Rowe J. J. Solubility of Amorphous Silica in Water at High-Temperatures and High-Pressures. Am. Mineral. 1977, 62 (9–10), 1052–1056.

Karásek P.; Planeta J.; Roth M. Near- and Supercritical Water as a Diameter Manipulation and Surface Roughening Agent in Fused Silica Capillaries. Anal. Chem. 2013, 85 (1), 327–333. 10.1021/ac302849q. PubMed DOI

Karásek P.; Horká M.; Šlais K.; Planeta J.; Roth M. Supercritical water-treated fused silica capillaries in analytical separations: Status review. Journal of Chromatography A 2018, 1539, 1–11. 10.1016/j.chroma.2018.01.051. PubMed DOI

Horká M.; Šalplachta J.; Karásek P.; Ru̇žička F.; Roth M. Online Concentration of Bacteria from Tens of Microliter Sample Volumes in Roughened Fused Silica Capillary with Subsequent Analysis by Capillary Electrophoresis and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. ACS Infect. Dis. 2020, 6 (3), 355–365. 10.1021/acsinfecdis.9b00200. PubMed DOI

Horká M.; Šalplachta J.; Karásek P.; Ru̇žička F.; Štveráková D.; Pantu̇ček R.; Roth M. Rapid Isolation, Propagation, and Online Analysis of a Small Number of Therapeutic Staphylococcal Bacteriophages from a Complex Matrix. ACS Infect. Dis. 2020, 6 (10), 2745–2755. 10.1021/acsinfecdis.0c00358. PubMed DOI

Horká M.; Šalplachta J.; Karásek P.; Roth M. Sensitive identification of milk protein allergens using on-line combination of transient isotachophoresis/micellar electrokinetic chromatography and capillary isoelectric focusing in fused silica capillary with roughened part. Food Chem. 2022, 377, 13198610.1016/j.foodchem.2021.131986. PubMed DOI

Cortes H. J.; Pfeiffer C. D.; Richter B. E.; Stevens T. S. Porous Ceramic Bed Supports for Fused-Silica Packed Capillary Columns Used in Liquid-Chromatography. J. High Res. Chromatog 1987, 10 (8), 446–448. 10.1002/jhrc.1240100805. DOI

Planeta J.; Karásek P.; Vejrosta J. Development of packed capillary columns using carbon dioxide slurries. J. Sep. Sci. 2003, 26 (6–7), 525–530. 10.1002/jssc.200390071. DOI

Yang C.; Ikegami T.; Hara T.; Tanaka N. Improved endcapping method of monolithic silica columns. Journal of Chromatography A 2006, 1130 (2), 175–181. 10.1016/j.chroma.2006.04.010. PubMed DOI

Wagner W.; Overhoff U.. ThermoFluids. Interactive software for the calculation of thermodynamic properties for more than 60 pure substances; Berlin-Heidelberg: Springer-Verlag, 2006.

Wagner W.; Pruss A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 2002, 31 (2), 387–535. 10.1063/1.1461829. DOI

Debisschop F. R. E.; Rigole W. J. L. A Physical Model for Liquid Capillary Bridges between Adsorptive Solid Spheres - the Nodoid of Plateau. J. Colloid Interface Sci. 1982, 88 (1), 117–128. 10.1016/0021-9797(82)90161-8. DOI

Agarwal P.; Murdande R. M.; Kandaswamy A. S.; Bobji M. S. Dynamic stretching of a liquid bridge. Int. J. Adv. Eng. Sci. Ap 2019, 11 (4), 238–243. 10.1007/s12572-020-00256-8. DOI

Lian G. P.; Thornton C.; Adams M. J. A Theoretical-Study of the Liquid Bridge Forces between 2 Rigid Spherical Bodies. J. Colloid Interface Sci. 1993, 161 (1), 138–147. 10.1006/jcis.1993.1452. DOI

Carman P. C. Properties of Capillary-Held Liquids. J. Phys. Chem-Us 1953, 57 (1), 56–64. 10.1021/j150502a012. DOI

Beckett C. T. S.; Augarde C. E. Prediction of soil water retention properties using pore-size distribution and porosity. Can. Geotech J. 2013, 50 (4), 435–450. 10.1139/cgj-2012-0320. DOI

Haines W. B. Studies in the physical properties of soils II A note on the cohesion developed by capillary forces in an ideal soil. J. Agr Sci. 1925, 15, 529–535. 10.1017/S0021859600082460. DOI

Haines W. B. Studies in the physical properties of soils IV A further contribution to the theory of capillary phenomena in soil. J. Agr Sci. 1927, 17, 264–290. 10.1017/S0021859600018499. DOI

Carminati A.; Benard P.; Ahmed M. A.; Zarebanadkouki M. Liquid bridges at the root-soil interface. Plant Soil 2017, 417 (1–2), 1–15. 10.1007/s11104-017-3227-8. DOI

Zimon A. D.Adhesion of Dust and Powder; Springer, 2012.

Dimitrov A. S.; Miwa T.; Nagayama K. A comparison between the optical properties of amorphous and crystalline monolayers of silica particles. Langmuir 1999, 15 (16), 5257–5264. 10.1021/la990225r. DOI

Yoon S. Y.; Park Y. S.; Lee J. S. Local Liquid Phase Deposition of Silicon Dioxide on Hexagonally Close-Packed Silica Beads. Langmuir 2015, 31 (1), 249–253. 10.1021/la5041536. PubMed DOI

Zhu R. R.; Li S. Q.; Yao Q. Effects of cohesion on the flow patterns of granular materials in spouted beds. Phys. Rev. E 2013, 87 (2), 02220610.1103/PhysRevE.87.022206. PubMed DOI

Christaks N.; Wang J.; Patel M. K.; Bradley M. S. A.; Leaper M. C.; Cross M. Aggregation and caking processes of granular materials: continuum model and numerical simulation with application to sugar. Adv. Powder Technol. 2006, 17 (5), 543–565. 10.1163/156855206778440480. DOI

Sheetz D. P. Formation of Films by Drying of Latex. J. Appl. Polym. Sci. 1965, 9 (11), 3759.10.1002/app.1965.070091123. DOI

Hirta Y.; Harada A.; Wang X. H. Wet forming and sintering behavior of nanometer-sized ceria powder. Ceram. Int. 2005, 31 (7), 1007–1013. 10.1016/j.ceramint.2004.10.017. DOI

Althaus T. O.; Windhab E. J.; Scheuble N. Effect of pendular liquid bridges on the flow behavior of wet powders. Powder Technol. 2012, 217, 599–606. 10.1016/j.powtec.2011.11.026. DOI

Forcada M. L.; Jakas M. M.; Gras-Martí A. On liquid-film thickness measurements with the atomic-force microscope. J. Chem. Phys. 1991, 95 (1), 706–708. 10.1063/1.461420. DOI

Scott R. P. W.Small bore liquid chromatography columns: their properties and uses; Wiley-Interscience, 1984.

Bristow P. A.; Knox J. H. Standardization of Test Conditions for High-Performance Liquid-Chromatography Columns. Chromatographia 1977, 10 (6), 279–289. 10.1007/BF02263001. DOI

Misra S.; Wahab M. F.; Patel D. C.; Armstrong D. W. The utility of statistical moments in chromatography using trapezoidal and Simpson’s rules of peak integration. J. Sep. Sci. 2019, 42 (8), 1644–1657. 10.1002/jssc.201801131. PubMed DOI

Meyer V. R.HPLC Column Tests. In Practical High-Performance Liquid Chromatography; John Wiley & Sons, 2010; pp. 141–158.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...