Latitudinal gradients in the phylogenetic assembly of angiosperms in Asia during the Holocene

. 2024 Aug 02 ; 14 (1) : 17940. [epub] 20240802

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39095414

Grantová podpora
741413 HORIZON EUROPE European Research Council
PRG874 Estonian Research Council
PRG323 Estonian Research Council

Odkazy

PubMed 39095414
PubMed Central PMC11297032
DOI 10.1038/s41598-024-67650-1
PII: 10.1038/s41598-024-67650-1
Knihovny.cz E-zdroje

Spatio-temporal assessment of phylogenetic diversity gradients during the Holocene (past 12,000 years) provides an opportunity for a deeper understanding of the dynamics of species co-occurrence patterns under environmental fluctuations. Using two robust metrics of phylogenetic dispersion (PD) and 99 fossil pollen sequences containing 6557 samples/assemblages, we analyse spatio-temporal variation in PD of angiosperms and its relationship with Holocene climate in central Asia. Overall, PD throughout the Holocene decreases linearly with increasing latitude, except for a rise in mean nearest taxon distance from ca. 25 to 35° N. This indicates that phylogenetically divergent taxa decrease progressively with increasing latitude, leaving more phylogenetically closely related taxa in the assemblages, thereby increasing phylogenetic relatedness among the co-occurring taxa. The latitudinal gradient of PD has not been consistent during the Holocene, and this temporal variation is concordant with the Holocene climate dynamics. In general, profound temporal changes in the latitudinal PD toward higher latitudes implies that the major environmental changes during the Holocene have driven considerable spatio-temporal changes in the phylogenetic assembly of high-latitude angiosperm assemblages. Our results suggest that environmental filtering and the tendency of taxa and lineages to retain ancestral ecological features and geographic distributions (phylogenetic niche conservatism) are the main mechanisms underlying the phylogenetic assembly of angiosperms along the climate-latitudinal gradient. Ongoing environmental changes may pose future profound phylogenetic changes in high-latitude plant assemblages, which are adapted to harsh environmental conditions, and therefore are phylogenetically less dispersed (more conservative or clustered).

Zobrazit více v PubMed

Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr.27, 125–141 (2018).10.1111/geb.12665 DOI

Jablonski, D., Huang, S., Roy, K. & Valentine, J. W. Shaping the latitudinal diversity gradient: New perspectives from a synthesis of paleobiology and biogeography. Am. Nat.189, 1–12 (2017). 10.1086/689739 PubMed DOI

Lamsdell, J. C., Congreve, C. R., Hopkins, M. J., Krug, A. Z. & Patzkowsky, M. E. Phylogenetic paleoecology: Tree-thinking and ecology in deep time. Trends Ecol. Evol.32, 452–463 (2017). 10.1016/j.tree.2017.03.002 PubMed DOI

Ramírez-Barahona, S., Sauquet, H. & Magallón, S. The delayed and geographically heterogeneous diversification of flowering plant families. Nat. Ecol. Evol.4, 1232–1238 (2020). 10.1038/s41559-020-1241-3 PubMed DOI

Faith, D. P. & Richards, Z. T. Climate change impacts on the tree of life: Changes in phylogenetic diversity illustrated for Acropora corals. Biology.1, 906–932 (2012). 10.3390/biology1030906 PubMed DOI PMC

Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst.33, 475–505 (2002).10.1146/annurev.ecolsys.33.010802.150448 DOI

Webb, C. O. Exploring the phylogenetic structure of ecological communities: An example for rain forest trees. Am. Nat.156, 145–155 (2000). 10.1086/303378 PubMed DOI

Dietl, G. P. et al. Conservation paleobiology: Leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci.43, 79–103 (2015).10.1146/annurev-earth-040610-133349 DOI

Lamsdell, J. C. & Congreve, C. R. Phylogenetic paleoecology: Macroecology within an evolutionary framework. Paleobiology47, 171–177 (2021).10.1017/pab.2020.61 DOI

Blaus, A. et al. Modern pollen-plant diversity relationships inform palaeoecological reconstructions of functional and phylogenetic diversity in Calcareous fens. Front. Ecol. Evol.10.3389/fevo.2020.00207 (2020).10.3389/fevo.2020.00207 DOI

Reitalu, T. et al. Novel insights into post-glacial vegetation change: Functional and phylogenetic diversity in pollen records. J. Veg. Sci.26, 911–922 (2015).10.1111/jvs.12300 DOI

Knollová, I., Chytrý, M., Bruelheide, H., Dullinger, S. & Benito-, L. ReSurveyEurope: A database of resurveyed vegetation plots in Europe. J. Veg. Sci.10.1111/jvs.13235 (2024).10.1111/jvs.13235 DOI

Birks, H. J. B. Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecol. Divers.12, 189–385 (2019).10.1080/17550874.2019.1646831 DOI

Birks, H. J. B. & Birks, H. H. Quaternary Palaeoecology. ((Reprinted 2004 by Blackburn Press, New Jersey): Edward Arnold., London, 1980).

Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science.369, (2020). PubMed

Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol.228, 1–25 (2016).10.1016/j.revpalbo.2015.12.011 DOI

Väli, V., Odgaard, B. V., Väli, Ü. & Poska, A. Pollen richness : a reflection of vegetation diversity or pollen-specific parameters ?. Veg. Hist. Archaeobot.31, 611–622 (2022).10.1007/s00334-022-00879-w DOI

Adeleye, M. A., Haberle, S. G., Gallagher, R., Andrew, S. C. & Herbert, A. Changing plant functional diversity over the last 12,000 years provides perspectives for tracking future changes in vegetation communities. Nat. Ecol. Evol.7, 224–235 (2023). PubMed

Mottl, O. et al. Global acceleration in rates of vegetation change over the past 18,000 years. Science372, 860–864 (2021). 10.1126/science.abg1685 PubMed DOI

Stegner, M. A. & Spanbauer, T. L. North American pollen records provide evidence for macroscale ecological changes in the Anthropocene. Proc. Natl. Acad. Sci.120, e2306815120 (2023). 10.1073/pnas.2306815120 PubMed DOI PMC

Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci.118, e2023483118 (2021). 10.1073/pnas.2023483118 PubMed DOI PMC

Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science365, 897–902 (2019). 10.1126/science.aax1192 PubMed DOI

Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science361, 920–923 (2018). 10.1126/science.aan5360 PubMed DOI

Pennisi, E. Human impacts on ecosystems began thousands of years ago: Early humans broke up existing plant and animal networks, perhaps boosting extinction risks. Science350, 1452 (2015). 10.1126/science.350.6267.1452 PubMed DOI

Massante, J. C. et al. Contrasting latitudinal patterns in phylogenetic diversity between woody and herbaceous communities. Sci. Rep.9, 1–10 (2019). PubMed PMC

Qian, H., Zhang, J. & Jiang, M. Global patterns of taxonomic and phylogenetic diversity of flowering plants: Biodiversity hotspots and coldspots. Plant Divers.10.1016/j.pld.2023.01.009 (2023). 10.1016/j.pld.2023.01.009 PubMed DOI PMC

Latham, R. E. & Ricklefs, R. E. Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness. Oikos67, 325–333 (1993).10.2307/3545479 DOI

Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol.19, 639–644 (2004). 10.1016/j.tree.2004.09.011 PubMed DOI

Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett.13, 1310–1324 (2010). 10.1111/j.1461-0248.2010.01515.x PubMed DOI

Chai, Y. et al. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: Insights into assembly process. Sci. Rep.6, 1–10 (2016). 10.1038/srep27087 PubMed DOI PMC

De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol.101, 784–795 (2013).10.1111/1365-2745.12074 DOI

Woodward, F. I. Climate and Plant Distribution (Cambridge University Press, 1987).

Pau, S. et al. Predicting phenology by integrating ecology, evolution and climate science. Glob. Chang. Biol.17, 3633–3643 (2011).10.1111/j.1365-2486.2011.02515.x DOI

Cao, X., Ni, J., Herzschuh, U., Wang, Y. & Zhao, Y. A late Quaternary pollen dataset from eastern continental Asia for vegetation and climate reconstructions: Set up and evaluation. Rev. Palaeobot. Palynol.194, 21–37 (2013).10.1016/j.revpalbo.2013.02.003 DOI

Chen, F. et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci. Rev.192, 337–354 (2019).10.1016/j.earscirev.2019.03.005 DOI

Huang, X. et al. Holocene vegetation and climate dynamics in the Altai Mountains and surrounding areas. Geophys. Res. Lett.45, 6628–6636 (2018).10.1029/2018GL078028 DOI

Blyakharchuk, T. A., Wright, H. E., Borodavko, P. S., van der Knaap, W. O. & Ammann, B. Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Palaeogeogr. Palaeoclimatol. Palaeoecol.245, 518–534 (2007).10.1016/j.palaeo.2006.09.010 DOI

Chen, F. et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep.5, 1–11 (2015). PubMed PMC

Bhatta, K. P. et al. Exploring spatio-temporal patterns of palynological changes in Asia during the Holocene. Front. Ecol. Evol.10.3389/fevo.2023.1115784 (2023).10.3389/fevo.2023.1115784 DOI

Chen, F. H. et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P.. Science.347, 248–250 (2015). 10.1126/science.1259172 PubMed DOI

Huang, X. et al. Early human impacts on vegetation on the northeastern Qinghai-Tibetan Plateau during the middle to late Holocene. Prog. Phys. Geogr. Earth Environ.41, 286–301 (2017).10.1177/0309133317703035 DOI

Fuller, D. Q. & Qin, L. Declining oaks, increasing artistry, and cultivating rice: The environmental and social context of the emergence of farming in the Lower Yangtze Region. Environ. Archaeol.15, 139–159 (2010).10.1179/146141010X12640787648531 DOI

Ruddiman, W. F., He, F., Vavrus, S. J. & Kutzbach, J. E. The early anthropogenic hypothesis: A review. Quat. Sci. Rev.240, 106386 (2020).10.1016/j.quascirev.2020.106386 DOI

Körner, C. & Hiltbrunner, E. The 90 ways to describe plant temperature. Perspect. Plant Ecol. Evol. Syst.30, 16–21 (2018).10.1016/j.ppees.2017.04.004 DOI

Qian, H. Climatic correlates of phylogenetic relatedness of woody angiosperms in forest communities along a tropical elevational gradient in South America. J. Plant Ecol.11, 394–400 (2018).10.1093/jpe/rtx006 DOI

Qian, H. et al. Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proc. Natl. Acad. Sci. U. S. A.116, 23192–23201 (2019). 10.1073/pnas.1822153116 PubMed DOI PMC

Wang, Z., Fang, J., Tang, Z. & Lin, X. Patterns, determinants and models of woody plant diversity in China. Proc. R. Soc. B Biol. Sci.278, 2122–2132 (2011).10.1098/rspb.2010.1897 PubMed DOI PMC

Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data5, 1–12 (2018). 10.1038/sdata.2018.214 PubMed DOI PMC

Flantua, S. G. A. et al. A guide to the processing and standardization of global palaeoecological data for large-scale syntheses using fossil pollen. Glob. Ecol. Biogeogr.32, 1377–1394 (2023).10.1111/geb.13693 DOI

Gong, D. Y. & Ho, C. H. The Siberian High and climate change over middle to high latitude Asia. Theor. Appl. Climatol.72, 1–9 (2002).10.1007/s007040200008 DOI

Chen, W.-Y. & Su, T. Asian monsoon shaped the pattern of woody dicotyledon richness in humid regions of China. Plant Divers.42, 148–154 (2020). 10.1016/j.pld.2020.03.003 PubMed DOI PMC

Groisman, P. Y. et al. Climate Changes in Siberia. In Regional Environmental Changes in Siberia and Their Global Consequences (eds Groisman, P. Y. & Gutman, G.) 57–109 (Springer, Dordrecht Heidelberg New York London, 2013).

Hou, X. Vegetation Atlas of China (Science Press, 2001).

Cao, X., Herzschuh, U., Ni, J., Zhao, Y. & Böhmer, T. Spatial and temporal distributions of major tree taxa in eastern continental Asia during the last 22,000 years. The Holocene25, 79–91 (2015).10.1177/0959683614556385 DOI

Zhang, Y. et al. Characteristics and utilization of plant diversity and resources in Central Asia. Reg. Sustain.1, 1–10 (2020).

Safronova, I. & Yurkovsksya, T. The latitudinal distribution of vegetation cover in Siberia. BIO Web Conf.16, 00047 (2019).10.1051/bioconf/20191600047 DOI

Gong, Z. et al. The temporal and spatial distribution of ancient rice in China and its implications. Chinese Sci. Bull.52, 1071–1079 (2007).10.1007/s11434-007-0130-3 DOI

Herzschuh, U., Birks, H. J. B., Liu, X., Kubatzki, C. & Lohmann, G. What caused the mid-Holocene forest decline on the eastern Tibet-Qinghai Plateau?. Glob. Ecol. Biogeogr.19, 278–286 (2010).10.1111/j.1466-8238.2009.00501.x DOI

Zhang, D., Chen, X., Li, Y. & Zhang, S. Holocene vegetation dynamics and associated climate changes in the Altai Mountains of the Arid Central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol.550, 109744 (2020).10.1016/j.palaeo.2020.109744 DOI

Blyakharchuk, T. A. Western Siberia, a review of Holocene climatic changes. J. Sib. Fed. Univ. Biol.2, 4–12 (2009).10.17516/1997-1389-0244 DOI

Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. R Stat. Soc. Ser. C Appl. Stat.57, 399–418 (2008).10.1111/j.1467-9876.2008.00623.x DOI

Birks, H. J. B. et al. Approaches to pollen taxonomic harmonisation in Quaternary palynology. Rev. Palaeobot. Palynol.319, 1–6 (2023).10.1016/j.revpalbo.2023.104989 DOI

The Angiosperm Phylogeny Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc.181, 1–20 (2016).10.1111/boj.12385 DOI

Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics35, 526–528 (2019). 10.1093/bioinformatics/bty633 PubMed DOI

R Core Team. R: A language and environment for statistical computing. URL https://www.R-project.org/ (2022).

Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics24, 2098–2100 (2008). 10.1093/bioinformatics/btn358 PubMed DOI

Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics26, 1463–1464 (2010). 10.1093/bioinformatics/btq166 PubMed DOI

Mazel, F. et al. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography.39, 913–920 (2016). 10.1111/ecog.01694 PubMed DOI PMC

Qian, H., Ricklefs, R. E. & Thuiller, W. Evolutionary assembly of flowering plants into sky islands. Nat. Ecol. Evol.5, 640–646 (2021). 10.1038/s41559-021-01423-1 PubMed DOI

Qian, H., Kessler, M. & Jin, Y. Spatial patterns and climatic drivers of phylogenetic structure for ferns along the longest elevational gradient in the world. Ecography.10.1111/ecog.06516 (2023).10.1111/ecog.06516 DOI

Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H. & Niklaus, E. CHELSA-TraCE21k v1.0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past19, 439–456 (2023).10.5194/cp-19-439-2023 DOI

Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ7, e6876 (2019). 10.7717/peerj.6876 PubMed DOI PMC

Wood, S. Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. (2022).

Rose, N. L., Yang, H., Turner, S. D. & Simpson, G. L. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland. UK. Geochim. Cosmochim. Acta82, 113–135 (2012).10.1016/j.gca.2010.12.026 DOI

Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6-2. at https://cran.r-project.org/package=vegan (2022).

Peres-Neto, P. R. & Jackson, D. A. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia129, 169–178 (2001). 10.1007/s004420100720 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...