Partial asynchrony of coniferous forest carbon sources and sinks at the intra-annual time scale

. 2024 Aug 05 ; 15 (1) : 6169. [epub] 20240805

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39103349
Odkazy

PubMed 39103349
PubMed Central PMC11300610
DOI 10.1038/s41467-024-49494-5
PII: 10.1038/s41467-024-49494-5
Knihovny.cz E-zdroje

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.

5 N Sukachev Institute of Forest SB RAS Federal Research Center 'Krasnoyarsk Science Center SB RAS 660036 Krasnoyarsk Akademgorodok Russia

AMAP University of Montpellier CIRAD CNRS INRAE IRD Montpellier France

Centre for Ecological Sciences Indian Institute of Science Bangalore 560012 India

Centre for Functional Ecology Associate Laboratory TERRA Department of Life Sciences University of Coimbra 3000 456 Coimbra Portugal

CoLAB ForestWISE Collaborative Laboratory for Integrated Forest and Fire Management Quinta de Prados 5000 801 Vila Real Portugal

College of Forestry Guangxi Key Laboratory of Forest Ecology and Conservation Guangxi University Daxue East Road 100 Nanning Guangxi 530004 China

College of Life Sciences Anhui Normal University Wuhu 241000 China

CREAF E08193 Bellaterra Barcelona Catalonia Spain

DendroLab Department of Natural Resources and Environmental Science University of Nevada Reno NV 89557 USA

Department of Agricultural and Food Sciences University of Bologna 40127 Bologna Italy

Department of Agricultural Sciences University of Naples Federico 2 1 80055 Portici Napoli Italy

Department of Biology and Geology Physics and Inorganic Chemistry Rey Juan Carlos University c Tulipán s n 28933 Móstoles Spain

Department of Botany Leopold Franzens University of Innsbruck 6020 Innsbruck Austria

Department of Botany University of Kashmir India 190006 Kashmir Srinagar India

Department of Environmental Sciences Botany University of Basel Schönbeinstrasse 6 CH 4056 Basel Switzerland

Department of Forest Botany Dendrology and Geobiocenology Faculty of Forestry and Wood Technology Mendel University in Brno Zemedelska 1 61300 Brno Czech Republic

Department of Forest Ecology The Silva Tarouca Research Institute for Landscape and Ornamental Gardening Brno Czechia

Department of Forest Sciences University of Helsinki PO Box 27 00014 Helsinki Finland

Department of Geography and Regional Planning Environmental Science Institute University of Zaragoza 50009 Zaragoza Spain

Department of Geography University of Cambridge Cambridge CB2 3EN UK

Department of Physical Geography and Geoecology Charles University CZ 12843 Prague Czech Republic

Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot 76100 Israel

Department of Wood Science and Wood Technology Mendel University in Brno 61300 Brno Czech Republic

Dipartimento di Agraria Università Mediterranea di Reggio Calabria 89122 Reggio Calabria Italy

Dipartimento di Agricoltura Ambiente e Alimenti Università degli Studi del Molise 86100 Campobasso Italy

Direction de la Recherche Forestière Ministère des Ressources Naturelles et des Forêts du Québec 2700 rue Einstein Québec QC G1P 3W8 Canada

Division of Biological Sciences University of Montana Missoula MT USA

Earth Systems Research Center Institute for the Study of Earth Oceans and Space University of New Hampshire Durham NH USA

EIFAB iuFOR Universidad de Valladolid Campus Duques de Soria E 42004 Soria Spain

Faculty of Agricultural Environmental and Food Sciences Free University of Bozen Bolzano Piazza Università 5 39100 Bozen Bolzano Italy

Forest Research Institute Université du Québec en Abitibi Témiscamingue Rouyn Noranda QC Canada

Global Change Research Institute c Tulipán s n 28933 Móstoles Spain

Guangdong Open Laboratory of Geospatial Information Technology and Application Guangzhou Institute of Geography Guangdong Academy of Sciences Guangzhou 510070 China

Institució Catalana de Recerca i Estudis Avançats Passeig de Lluis Companys 23 08010 Barcelona Spain

Institut National de l'Information Géographique et Forestière 54250 Champigneulles France

Institute for Atmospheric and Earth System Research Forest Sciences Faculty of Agriculture and Forestry P O Box 27 University of Helsinki FI 00014 Helsinki Finland

Institute for Atmospheric and Earth System Research Physics Faculty of Science P O Box 68 University of Helsinki FI 00014 Helsinki Finland

Institute of Geography Johannes Gutenberg University Mainz Mainz Germany

Instituto Pirenaico de Ecología Consejo Superior de Investigaciones Científicas 50192 Zaragoza Spain

Istituto di Ricerca sugli Ecosistemi Terrestri Consiglio Nazionale delle Ricerche 50019 Sesto Fiorentino Italy

Izmir Katip Çelebi University Faculty of Forestry Izmir Türkiye

Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems Guangdong Provincial Key Laboratory of Applied Botany South China Botanical Garden Chinese Academy of Sciences Guangzhou 510650 China

Laboratoire sur les écosystemes terrestres boreaux Département des Sciences Fondamentales Université du Québec à Chicoutimi 555 boulevard de l'Université Chicoutimi QC G7H2B1 Canada

MOE Key Laboratory of Biosystems Homeostasis and Protection College of Life Sciences Zhejiang University Hangzhou 310058 China

National Resources Institute Helsinki Finland

Natural Resources Institute Finland Latokartanonkaari 9 00790 Helsinki Finland

Oeschger Centre for Climate Change Research University of Bern Hochschulstrasse 4 CH 3012 Bern Switzerland

School of Geography and Ocean Science Nanjing University Nanjing 210093 China

Siberian Federal University 79 Svobodny pr 660041 Krasnoyarsk Russia

Slovenian Forestry Institute 1000 Ljubljana Slovenia

South China National Botanical Garden Guangzhou 510650 China

State Key Laboratory of Tibetan Plateau Earth System Environment and Resources Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing 100101 China

Swiss Federal Institute for Forest Snow and Landscape Research WSL Zürcherstrasse 111 CH 8903 Birmensdorf Switzerland

Universitat Autònoma de Barcelona Bellaterra E08193 Barcelona Catalonia Spain

Université Clermont Auvergne INRAE PIAF 63000 Clermont Ferrand France

Université de Lorraine AgroParisTech INRAE SILVA F 54000 Nancy France

University of Ljubljana Biotechnical Faculty 1000 Ljubljana Slovenia

Zobrazit více v PubMed

Graven, H. D. et al. Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science341, 1085–1089 (2013). 10.1126/science.1239207 PubMed DOI

Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol. Monogr.86, 495–516 (2016).10.1002/ecm.1231 DOI

Friend, A. D. et al. On the need to consider wood formation processes in global vegetation models and a suggested approach. Ann. For. Sci.76, 49–49 (2019).10.1007/s13595-019-0819-x DOI

Deslauriers, A., Huang, J. G., Balducci, L., Beaulieu, M. & Rossi, S. The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol.170, 2072–2084 (2016). 10.1104/pp.15.01525 PubMed DOI PMC

Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants1, 1–6 (2015).10.1038/nplants.2015.160 PubMed DOI

Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot.62, 1715–1729 (2011). 10.1093/jxb/erq438 PubMed DOI

Yang, J., He, Y., Aubrey, D. P., Zhuang, Q. & Teskey, R. O. Global patterns and predictors of stem CO2 efflux in forest ecosystems. Glob. Change Biol.22, 1433–1444 (2016).10.1111/gcb.13188 PubMed DOI

Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. N. Phytol.201, 1086–1095 (2014).10.1111/nph.12614 PubMed DOI

Körner, C. Carbon limitation in trees. J. Ecol.91, 4–17 (2003).10.1046/j.1365-2745.2003.00742.x DOI

Balducci, L. et al. Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant Cell Environ.39, 1338–1352 (2016). 10.1111/pce.12689 PubMed DOI

Rossi, S. et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol.22, 3804–3813 (2016).10.1111/gcb.13317 PubMed DOI

Huang, J. G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA117, 20645–20652 (2020). 10.1073/pnas.2007058117 PubMed DOI PMC

Xu, B., Yang, Y., Li, P., Shen, H. & Fang, J. Global patterns of ecosystem carbon flux in forests: a biometric data-based synthesis. Glob. Biogeochem. Cycles28, 962–973 (2014).10.1002/2013GB004593 DOI

Vicente-Serrano, S. M. et al. Linking tree-ring growth and satellite-derived gross primary growth in multiple forest biomes. Temporal-scale matters. Ecol. Indic.108, 105753–105753 (2020).10.1016/j.ecolind.2019.105753 DOI

Xu, K. et al. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Sci. Rep.7, 1–8 (2017). PubMed PMC

McKenzie, S. M., Pisaric, M. F. J. & Arain, M. A. Comparison of tree-ring growth and eddy covariance-based ecosystem productivities in three different-aged pine plantation forests. Trees - Struct. Funct.35, 583–595 (2021).10.1007/s00468-020-02061-z DOI

Metsaranta, J. M., Mamet, S. D., Maillet, J. & Barr, A. G. Comparison of tree-ring and eddy-covariance derived annual ecosystem production estimates for jack pine and trembling aspen forests in Saskatchewan, Canada. Agric. For. Meteorol.307, 108469–108469 (2021).10.1016/j.agrformet.2021.108469 DOI

Teets, A. et al. Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agric. For. Meteorol.249, 479–487 (2018).10.1016/j.agrformet.2017.08.007 DOI

Tei, S. et al. Strong and stable relationships between tree-ring parameters and forest-level carbon fluxes in a Siberian larch forest. Polar Sci.21, 146–157 (2019).10.1016/j.polar.2019.02.001 DOI

Puchi, P. F. et al. Revealing how intra- and inter-annual variability of carbon uptake (GPP) affects wood cell biomass in an eastern white pine forest. Environ. Res. Lett.18, 024027–024027 (2023).10.1088/1748-9326/acb2df DOI

Rocha, A. V., Goulden, M. L., Dunn, A. L. & Wofsy, S. C. On linking interannual tree ring variability with observations of whole-forest CO2 flux. Glob. Change Biol.12, 1378–1389 (2006).10.1111/j.1365-2486.2006.01179.x DOI

Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytologist210, 459–470 (2016).10.1111/nph.13771 PubMed DOI

Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science376, 758–761 (2022). 10.1126/science.abm4875 PubMed DOI

Oddi, L. et al. Contrasting responses of forest growth and carbon sequestration to heat and drought in the Alps. Environ. Res. Lett.17, 045015–045015 (2022).10.1088/1748-9326/ac5b3a DOI

Krejza, J. et al. Disentangling carbon uptake and allocation in the stems of a spruce forest. Environ. Exp. Bot.196, 104787–104787 (2022).10.1016/j.envexpbot.2022.104787 DOI

Waring, R. H. & Running, S. W. Forest Ecosystems: Analysis at Multiple Scales (Academic Press, 1998).

Falk, M., Wharton, S., Schroeder, M., Ustin, S. & Paw U, K. T. Flux partitioning in an old-growth forest: Seasonal and interannual dynamics. Tree Physiol.28, 509–520 (2008). 10.1093/treephys/28.4.509 PubMed DOI

Chen, J. et al. Net ecosystem exchanges of carbon, water, and energy in young and old-growth douglas-fir forests. Ecosystems7, 534–544 (2004).10.1007/s10021-004-0143-6 DOI

Deslauriers, A., Fournier, M. P., Cartenì, F. & Mackay, J. Phenological shifts in conifer species stressed by spruce budworm defoliation. Tree Physiol.39, 590–605 (2019). 10.1093/treephys/tpy135 PubMed DOI

Cartenì, F. et al. PhenoCaB: a new phenological model based on carbon balance in boreal conifers. N. Phytol.239, 592–605 (2023).10.1111/nph.18974 PubMed DOI

MacNeill, G. J. et al. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J. Exp. Bot.68, 4433–4453 (2017). 10.1093/jxb/erx291 PubMed DOI

Gruber, A., Pirkebner, D., Oberhuber, W. & Wieser, G. Spatial and seasonal variations in mobile carbohydrates in Pinus cembra in the timberline ecotone of the Central Austrian Alps. Eur. J. For. Res.130, 173–179 (2011). 10.1007/s10342-010-0419-7 PubMed DOI PMC

Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. N. Phytol.211, 386–403 (2016).10.1111/nph.13955 PubMed DOI

Dietze, M. C. et al. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol.65, 667–687 (2014). 10.1146/annurev-arplant-050213-040054 PubMed DOI

Buttò, V. et al. Regionwide temporal gradients of carbon allocation allow for shoot growth and latewood formation in boreal black spruce. Glob. Ecol. Biogeogr.30, 1657–1670 (2021).10.1111/geb.13340 DOI

Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiol. Plant.147, 46–54 (2013). 10.1111/j.1399-3054.2012.01663.x PubMed DOI

Fajstavr, M. et al. How needle phenology indicates the changes of xylem cell formation during drought stress in Pinus sylvestris L. Dendrochronologia56, 125600–125600 (2019).10.1016/j.dendro.2019.05.004 DOI

Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits (Springer Science & Business Media, 2012).

Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol.25, 107–114 (2015). 10.1016/j.pbi.2015.05.003 PubMed DOI

Blechschmidt-Schneider, S. Phloem transport in Picea abies (L.) Karst. in mid-winter—I Microautoradiographic studies on 14C-assimilate translocation in shoots. Trees4, 179–186 (1990).10.1007/BF00225313 DOI

Warren, C. R. & Adams, M. A. Evergreen trees do not maximize instantaneous photosynthesis. Trends Plant Sci.9, 270–274 (2004). 10.1016/j.tplants.2004.04.004 PubMed DOI

Lawlor, D. W. & Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann. Bot.103, 561–579 (2009). 10.1093/aob/mcn244 PubMed DOI PMC

Silvestro, R. et al. From phenology to forest management: ecotypes selection can avoid early or late frosts, but not both. For. Ecol. Manag.436, 21–26 (2019).10.1016/j.foreco.2019.01.005 DOI

Guo, X. et al. Common-garden experiment reveals clinal trends of bud phenology in black spruce populations from a latitudinal gradient in the boreal forest. J. Ecol.110, 1043–1053 (2021).

Cartenì, F. et al. The physiological mechanisms behind the earlywood-to-latewood transition: a process-based modeling approach. Front. Plant Sci.9, 1053–1053 (2018). 10.3389/fpls.2018.01053 PubMed DOI PMC

Rinne, K. T. et al. The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia. Tree Physiol.35, 1192–1205 (2015). PubMed

Andreu-Hayles, L., Lévesque, M., Guerrieri, R., Siegwolf, R. T. W. & Körner, C. Limits and strengths of tree-ring stable isotopes. Tree Physiol.8, 399–428 (Springer, Cham, 2022).

Kodama, N. et al. Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: From newly assimilated organic carbon to respired carbon dioxide. Oecologia156, 737–750 (2008). 10.1007/s00442-008-1030-1 PubMed DOI

Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ.29, 1571–1584 (2006). 10.1111/j.1365-3040.2006.01533.x PubMed DOI

Rossi, S. et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. N. Phytol.170, 301–310 (2006).10.1111/j.1469-8137.2006.01660.x PubMed DOI

Silvestro, R. et al. A longer wood growing season does not lead to higher carbon sequestration. Sci. Rep.13, 1–12 (2023). 10.1038/s41598-023-31336-x PubMed DOI PMC

Silvestro, R. et al. Upscaling xylem phenology: sample size matters. Ann. Bot.130, 811–824 (2022). PubMed PMC

Bamberg, S. A., Schwarz, W. L. K. & Tranquillini, W. Influence of daylength on the photosynthetic capacity of stone pine (Pinus Cembra L.). Ecology48, 264–269 (1967).10.2307/1933109 DOI

Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. N. Phytologist185, 471–480 (2010).10.1111/j.1469-8137.2009.03073.x PubMed DOI

Eilmann, B., Buchmann, N., Siegwolf, R., Saurer, M. & Rigling, P. C. Fast response of Scots pine to improved water availability reflected in tree-ring width and δ 13C. Plant Cell Environ.33, 1351–1360 (2010). 10.1111/j.1365-3040.2010.02153.x PubMed DOI

Weber, R. et al. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. N. Phytologist218, 107–118 (2018).10.1111/nph.14987 PubMed DOI

Valentin, S. & Levin, S. plotbiomes: Plot Whittaker Biomes with ggplot2.https://rdrr.io/github/valentinitnelav/plotbiomes/man/plotbiomes.html (2020).

Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. data7, 225–225 (2020). 10.1038/s41597-020-0534-3 PubMed DOI PMC

Joiner, J. & Yoshida, Y. Global MODIS and FLUXNET-derived Daily Gross Primary Production, V2. https://daac.ornl.gov/VEGETATION/guides/FluxSat_GPP_FPAR.html (2021).

Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data4, 170122 (2017). 10.1038/sdata.2017.122 PubMed DOI PMC

Kaufman, L. & Rousseeuw, P. J. Clustering by means of Medoids. https://www.researchgate.net/publication/243777819_Clustering_by_Means_of_Medoids (1987).

Azzalini, A. The Skew-Normal and Related Families (Cambridge University Press, 2013).

Sit, V. & Poulin-Costello, M. Catalog of Curves for Curve Fitting (Ministry of Forests, Research Program, 1994).

Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc.81, 259–291 (2006). 10.1017/S1464793106007007 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...