Partial asynchrony of coniferous forest carbon sources and sinks at the intra-annual time scale
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39103349
PubMed Central
PMC11300610
DOI
10.1038/s41467-024-49494-5
PII: 10.1038/s41467-024-49494-5
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- cévnaté rostliny * metabolismus MeSH
- dřevo * metabolismus chemie MeSH
- ekosystém MeSH
- klimatické změny * MeSH
- koloběh uhlíku MeSH
- lesy * MeSH
- roční období * MeSH
- sekvestrace uhlíku * MeSH
- stromy metabolismus MeSH
- uhlík * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík * MeSH
As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.
AMAP University of Montpellier CIRAD CNRS INRAE IRD Montpellier France
Centre for Ecological Sciences Indian Institute of Science Bangalore 560012 India
College of Life Sciences Anhui Normal University Wuhu 241000 China
CREAF E08193 Bellaterra Barcelona Catalonia Spain
Department of Agricultural and Food Sciences University of Bologna 40127 Bologna Italy
Department of Agricultural Sciences University of Naples Federico 2 1 80055 Portici Napoli Italy
Department of Botany Leopold Franzens University of Innsbruck 6020 Innsbruck Austria
Department of Botany University of Kashmir India 190006 Kashmir Srinagar India
Department of Forest Sciences University of Helsinki PO Box 27 00014 Helsinki Finland
Department of Geography University of Cambridge Cambridge CB2 3EN UK
Department of Physical Geography and Geoecology Charles University CZ 12843 Prague Czech Republic
Department of Plant and Environmental Sciences Weizmann Institute of Science Rehovot 76100 Israel
Department of Wood Science and Wood Technology Mendel University in Brno 61300 Brno Czech Republic
Dipartimento di Agraria Università Mediterranea di Reggio Calabria 89122 Reggio Calabria Italy
Division of Biological Sciences University of Montana Missoula MT USA
EIFAB iuFOR Universidad de Valladolid Campus Duques de Soria E 42004 Soria Spain
Forest Research Institute Université du Québec en Abitibi Témiscamingue Rouyn Noranda QC Canada
Global Change Research Institute c Tulipán s n 28933 Móstoles Spain
Institució Catalana de Recerca i Estudis Avançats Passeig de Lluis Companys 23 08010 Barcelona Spain
Institut National de l'Information Géographique et Forestière 54250 Champigneulles France
Institute of Geography Johannes Gutenberg University Mainz Mainz Germany
Instituto Pirenaico de Ecología Consejo Superior de Investigaciones Científicas 50192 Zaragoza Spain
Izmir Katip Çelebi University Faculty of Forestry Izmir Türkiye
National Resources Institute Helsinki Finland
Natural Resources Institute Finland Latokartanonkaari 9 00790 Helsinki Finland
School of Geography and Ocean Science Nanjing University Nanjing 210093 China
Siberian Federal University 79 Svobodny pr 660041 Krasnoyarsk Russia
Slovenian Forestry Institute 1000 Ljubljana Slovenia
South China National Botanical Garden Guangzhou 510650 China
Universitat Autònoma de Barcelona Bellaterra E08193 Barcelona Catalonia Spain
Université Clermont Auvergne INRAE PIAF 63000 Clermont Ferrand France
Université de Lorraine AgroParisTech INRAE SILVA F 54000 Nancy France
University of Ljubljana Biotechnical Faculty 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Graven, H. D. et al. Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science341, 1085–1089 (2013). 10.1126/science.1239207 PubMed DOI
Martínez-Vilalta, J. et al. Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol. Monogr.86, 495–516 (2016).10.1002/ecm.1231 DOI
Friend, A. D. et al. On the need to consider wood formation processes in global vegetation models and a suggested approach. Ann. For. Sci.76, 49–49 (2019).10.1007/s13595-019-0819-x DOI
Deslauriers, A., Huang, J. G., Balducci, L., Beaulieu, M. & Rossi, S. The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol.170, 2072–2084 (2016). 10.1104/pp.15.01525 PubMed DOI PMC
Cuny, H. E. et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants1, 1–6 (2015).10.1038/nplants.2015.160 PubMed DOI
Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot.62, 1715–1729 (2011). 10.1093/jxb/erq438 PubMed DOI
Yang, J., He, Y., Aubrey, D. P., Zhuang, Q. & Teskey, R. O. Global patterns and predictors of stem CO2 efflux in forest ecosystems. Glob. Change Biol.22, 1433–1444 (2016).10.1111/gcb.13188 PubMed DOI
Fatichi, S., Leuzinger, S. & Körner, C. Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. N. Phytol.201, 1086–1095 (2014).10.1111/nph.12614 PubMed DOI
Körner, C. Carbon limitation in trees. J. Ecol.91, 4–17 (2003).10.1046/j.1365-2745.2003.00742.x DOI
Balducci, L. et al. Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant Cell Environ.39, 1338–1352 (2016). 10.1111/pce.12689 PubMed DOI
Rossi, S. et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol.22, 3804–3813 (2016).10.1111/gcb.13317 PubMed DOI
Huang, J. G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA117, 20645–20652 (2020). 10.1073/pnas.2007058117 PubMed DOI PMC
Xu, B., Yang, Y., Li, P., Shen, H. & Fang, J. Global patterns of ecosystem carbon flux in forests: a biometric data-based synthesis. Glob. Biogeochem. Cycles28, 962–973 (2014).10.1002/2013GB004593 DOI
Vicente-Serrano, S. M. et al. Linking tree-ring growth and satellite-derived gross primary growth in multiple forest biomes. Temporal-scale matters. Ecol. Indic.108, 105753–105753 (2020).10.1016/j.ecolind.2019.105753 DOI
Xu, K. et al. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Sci. Rep.7, 1–8 (2017). PubMed PMC
McKenzie, S. M., Pisaric, M. F. J. & Arain, M. A. Comparison of tree-ring growth and eddy covariance-based ecosystem productivities in three different-aged pine plantation forests. Trees - Struct. Funct.35, 583–595 (2021).10.1007/s00468-020-02061-z DOI
Metsaranta, J. M., Mamet, S. D., Maillet, J. & Barr, A. G. Comparison of tree-ring and eddy-covariance derived annual ecosystem production estimates for jack pine and trembling aspen forests in Saskatchewan, Canada. Agric. For. Meteorol.307, 108469–108469 (2021).10.1016/j.agrformet.2021.108469 DOI
Teets, A. et al. Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agric. For. Meteorol.249, 479–487 (2018).10.1016/j.agrformet.2017.08.007 DOI
Tei, S. et al. Strong and stable relationships between tree-ring parameters and forest-level carbon fluxes in a Siberian larch forest. Polar Sci.21, 146–157 (2019).10.1016/j.polar.2019.02.001 DOI
Puchi, P. F. et al. Revealing how intra- and inter-annual variability of carbon uptake (GPP) affects wood cell biomass in an eastern white pine forest. Environ. Res. Lett.18, 024027–024027 (2023).10.1088/1748-9326/acb2df DOI
Rocha, A. V., Goulden, M. L., Dunn, A. L. & Wofsy, S. C. On linking interannual tree ring variability with observations of whole-forest CO2 flux. Glob. Change Biol.12, 1378–1389 (2006).10.1111/j.1365-2486.2006.01179.x DOI
Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytologist210, 459–470 (2016).10.1111/nph.13771 PubMed DOI
Cabon, A. et al. Cross-biome synthesis of source versus sink limits to tree growth. Science376, 758–761 (2022). 10.1126/science.abm4875 PubMed DOI
Oddi, L. et al. Contrasting responses of forest growth and carbon sequestration to heat and drought in the Alps. Environ. Res. Lett.17, 045015–045015 (2022).10.1088/1748-9326/ac5b3a DOI
Krejza, J. et al. Disentangling carbon uptake and allocation in the stems of a spruce forest. Environ. Exp. Bot.196, 104787–104787 (2022).10.1016/j.envexpbot.2022.104787 DOI
Waring, R. H. & Running, S. W. Forest Ecosystems: Analysis at Multiple Scales (Academic Press, 1998).
Falk, M., Wharton, S., Schroeder, M., Ustin, S. & Paw U, K. T. Flux partitioning in an old-growth forest: Seasonal and interannual dynamics. Tree Physiol.28, 509–520 (2008). 10.1093/treephys/28.4.509 PubMed DOI
Chen, J. et al. Net ecosystem exchanges of carbon, water, and energy in young and old-growth douglas-fir forests. Ecosystems7, 534–544 (2004).10.1007/s10021-004-0143-6 DOI
Deslauriers, A., Fournier, M. P., Cartenì, F. & Mackay, J. Phenological shifts in conifer species stressed by spruce budworm defoliation. Tree Physiol.39, 590–605 (2019). 10.1093/treephys/tpy135 PubMed DOI
Cartenì, F. et al. PhenoCaB: a new phenological model based on carbon balance in boreal conifers. N. Phytol.239, 592–605 (2023).10.1111/nph.18974 PubMed DOI
MacNeill, G. J. et al. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J. Exp. Bot.68, 4433–4453 (2017). 10.1093/jxb/erx291 PubMed DOI
Gruber, A., Pirkebner, D., Oberhuber, W. & Wieser, G. Spatial and seasonal variations in mobile carbohydrates in Pinus cembra in the timberline ecotone of the Central Austrian Alps. Eur. J. For. Res.130, 173–179 (2011). 10.1007/s10342-010-0419-7 PubMed DOI PMC
Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. N. Phytol.211, 386–403 (2016).10.1111/nph.13955 PubMed DOI
Dietze, M. C. et al. Nonstructural carbon in woody plants. Annu. Rev. Plant Biol.65, 667–687 (2014). 10.1146/annurev-arplant-050213-040054 PubMed DOI
Buttò, V. et al. Regionwide temporal gradients of carbon allocation allow for shoot growth and latewood formation in boreal black spruce. Glob. Ecol. Biogeogr.30, 1657–1670 (2021).10.1111/geb.13340 DOI
Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiol. Plant.147, 46–54 (2013). 10.1111/j.1399-3054.2012.01663.x PubMed DOI
Fajstavr, M. et al. How needle phenology indicates the changes of xylem cell formation during drought stress in Pinus sylvestris L. Dendrochronologia56, 125600–125600 (2019).10.1016/j.dendro.2019.05.004 DOI
Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits (Springer Science & Business Media, 2012).
Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol.25, 107–114 (2015). 10.1016/j.pbi.2015.05.003 PubMed DOI
Blechschmidt-Schneider, S. Phloem transport in Picea abies (L.) Karst. in mid-winter—I Microautoradiographic studies on 14C-assimilate translocation in shoots. Trees4, 179–186 (1990).10.1007/BF00225313 DOI
Warren, C. R. & Adams, M. A. Evergreen trees do not maximize instantaneous photosynthesis. Trends Plant Sci.9, 270–274 (2004). 10.1016/j.tplants.2004.04.004 PubMed DOI
Lawlor, D. W. & Tezara, W. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann. Bot.103, 561–579 (2009). 10.1093/aob/mcn244 PubMed DOI PMC
Silvestro, R. et al. From phenology to forest management: ecotypes selection can avoid early or late frosts, but not both. For. Ecol. Manag.436, 21–26 (2019).10.1016/j.foreco.2019.01.005 DOI
Guo, X. et al. Common-garden experiment reveals clinal trends of bud phenology in black spruce populations from a latitudinal gradient in the boreal forest. J. Ecol.110, 1043–1053 (2021).
Cartenì, F. et al. The physiological mechanisms behind the earlywood-to-latewood transition: a process-based modeling approach. Front. Plant Sci.9, 1053–1053 (2018). 10.3389/fpls.2018.01053 PubMed DOI PMC
Rinne, K. T. et al. The relationship between needle sugar carbon isotope ratios and tree rings of larch in Siberia. Tree Physiol.35, 1192–1205 (2015). PubMed
Andreu-Hayles, L., Lévesque, M., Guerrieri, R., Siegwolf, R. T. W. & Körner, C. Limits and strengths of tree-ring stable isotopes. Tree Physiol.8, 399–428 (Springer, Cham, 2022).
Kodama, N. et al. Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: From newly assimilated organic carbon to respired carbon dioxide. Oecologia156, 737–750 (2008). 10.1007/s00442-008-1030-1 PubMed DOI
Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ.29, 1571–1584 (2006). 10.1111/j.1365-3040.2006.01533.x PubMed DOI
Rossi, S. et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. N. Phytol.170, 301–310 (2006).10.1111/j.1469-8137.2006.01660.x PubMed DOI
Silvestro, R. et al. A longer wood growing season does not lead to higher carbon sequestration. Sci. Rep.13, 1–12 (2023). 10.1038/s41598-023-31336-x PubMed DOI PMC
Silvestro, R. et al. Upscaling xylem phenology: sample size matters. Ann. Bot.130, 811–824 (2022). PubMed PMC
Bamberg, S. A., Schwarz, W. L. K. & Tranquillini, W. Influence of daylength on the photosynthetic capacity of stone pine (Pinus Cembra L.). Ecology48, 264–269 (1967).10.2307/1933109 DOI
Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. N. Phytologist185, 471–480 (2010).10.1111/j.1469-8137.2009.03073.x PubMed DOI
Eilmann, B., Buchmann, N., Siegwolf, R., Saurer, M. & Rigling, P. C. Fast response of Scots pine to improved water availability reflected in tree-ring width and δ 13C. Plant Cell Environ.33, 1351–1360 (2010). 10.1111/j.1365-3040.2010.02153.x PubMed DOI
Weber, R. et al. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. N. Phytologist218, 107–118 (2018).10.1111/nph.14987 PubMed DOI
Valentin, S. & Levin, S. plotbiomes: Plot Whittaker Biomes with ggplot2.https://rdrr.io/github/valentinitnelav/plotbiomes/man/plotbiomes.html (2020).
Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. data7, 225–225 (2020). 10.1038/s41597-020-0534-3 PubMed DOI PMC
Joiner, J. & Yoshida, Y. Global MODIS and FLUXNET-derived Daily Gross Primary Production, V2. https://daac.ornl.gov/VEGETATION/guides/FluxSat_GPP_FPAR.html (2021).
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data4, 170122 (2017). 10.1038/sdata.2017.122 PubMed DOI PMC
Kaufman, L. & Rousseeuw, P. J. Clustering by means of Medoids. https://www.researchgate.net/publication/243777819_Clustering_by_Means_of_Medoids (1987).
Azzalini, A. The Skew-Normal and Related Families (Cambridge University Press, 2013).
Sit, V. & Poulin-Costello, M. Catalog of Curves for Curve Fitting (Ministry of Forests, Research Program, 1994).
Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc.81, 259–291 (2006). 10.1017/S1464793106007007 PubMed DOI