Thermal stress, p53 structures and learning from elephants
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39107279
PubMed Central
PMC11303390
DOI
10.1038/s41420-024-02109-w
PII: 10.1038/s41420-024-02109-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
As species adapt to climatic changes, temperature-dependent functions of p53 in development, metabolism and cancer will adapt as well. Structural analyses of p53 epitopes interacting in response to environmental stressors, such as heat, may uncover physiologically relevant functions of p53 in cell regulation and genomic adaptations. Here we explore the multiple p53 elephant paradigm with an experimentally validated in silico model showing that under heat stress some p53 copies escape negative regulation by the MDM2 E3 ubiquitin ligase. Multiple p53 isoforms have evolved naturally in the elephant thus presenting a unique experimental system to study the scope of p53 functions and the contribution of environmental stressors to DNA damage. We assert that fundamental insights derived from studies of a historically heat-challenged mammal will provide important insights directly relevant to human biology in the light of climate change when 'heat' may introduce novel challenges to our bodies and health.
Department of Biology University of Oxford Oxford UK
Department of Medical Biosciences Umeå University Umeå Sweden
Inserm UMRS1131 Institut de Génétique Moléculaire Université Paris 7 Hôpital St Louis Paris France
International Centre for Cancer Vaccine Science University of Gdansk ul Kładki 24 Gdansk Poland
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Save the Elephants Marula Manor Karen P O Box 54667 Nairobi Kenya
Zobrazit více v PubMed
Domankevich V, Opatowsky Y, Malik A, Korol AB, Frenkel Z, Manov I, et al. Adaptive patterns in the p53 protein sequence of the hypoxia- and cancer-tolerant blind mole rat Spalax. BMC Evol Biol. 2016;16:177. 10.1186/s12862-016-0743-8. 10.1186/s12862-016-0743-8 PubMed DOI PMC
Zhang Q, Balourdas DI, Baron B, Senitzki A, Haran TE, Wiman KG, et al. Evolutionary history of the p53 family DNA-binding domain: insights from an Alvinella pompejana homolog. Cell Death Dis. 2022;13:214. 10.1038/s41419-022-04653-8. 10.1038/s41419-022-04653-8 PubMed DOI PMC
Jentsch M, Snyder P, Sheng C, Cristiano E, Loewer A. p53 dynamics in single cells are temperature-sensitive. Sci Rep. 2020;10:1481. 10.1038/s41598-020-58267-1. 10.1038/s41598-020-58267-1 PubMed DOI PMC
Hylander BL, Repasky EA. Thermoneutrality, mice, and cancer: a heated opinion. Trends Cancer. 2016;2:166–75. 10.1016/j.trecan.2016.03.005. 10.1016/j.trecan.2016.03.005 PubMed DOI
Hobohm U. Fever therapy revisited. Br J Cancer. 2005;92:421–5. 10.1038/sj.bjc.6602386. 10.1038/sj.bjc.6602386 PubMed DOI PMC
Dayanc BE, Beachy SH, Ostberg JR, Repasky EA. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperth. 2008;24:41–56. 10.1080/02656730701858297.10.1080/02656730701858297 PubMed DOI
Flora C, Tyler J, Mayer C, Warner DE, Khan SN, Gupta V, et al. High-frequency temperature monitoring for early detection of febrile adverse events in patients with cancer. Cancer Cell. 2021;39:1167–8. 10.1016/j.ccell.2021.07.019. 10.1016/j.ccell.2021.07.019 PubMed DOI PMC
Khoo KH, Andreeva A, Fersht AR. Adaptive evolution of p53 thermodynamic stability. J Mol Biol. 2009;393:161–75. 10.1016/j.jmb.2009.08.013. 10.1016/j.jmb.2009.08.013 PubMed DOI
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab. 2020;33:2–22. 10.1016/j.molmet.2019.10.002. 10.1016/j.molmet.2019.10.002 PubMed DOI PMC
Reinisch I, Michenthaler H, Sulaj A, Moyschewitz E, Krstic J, Galhuber M, et al. Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape. Nat Commun. 2024;15:1391. 10.1038/s41467-024-45724-y. 10.1038/s41467-024-45724-y PubMed DOI PMC
Parrales A, Iwakuma T. p53 as a regulator of lipid metabolism in cancer. Int J Mol Sci. 2016;17. 10.3390/ijms17122074. PubMed PMC
Chen LL, Wang WJ. p53 regulates lipid metabolism in cancer. Int J Biol Macromol. 2021;192:45–54. 10.1016/j.ijbiomac.2021.09.188. 10.1016/j.ijbiomac.2021.09.188 PubMed DOI
Yu L, Wu M, Zhu G, Xu Y. Emerging roles of the tumor suppressor p53 in metabolism. Front Cell Dev Biol. 2021;9:762742. 10.3389/fcell.2021.762742. 10.3389/fcell.2021.762742 PubMed DOI PMC
Gong J, Sun P, Li L, Zou Z, Wu Q, Sun L, et al. Heat stress suppresses MnSOD expression via p53-Sp1 interaction and induces oxidative stress damage in endothelial cells: Protective effects of MitoQ10 and Pifithrin-alpha. Heliyon. 2023;9:e22805. 10.1016/j.heliyon.2023.e22805. 10.1016/j.heliyon.2023.e22805 PubMed DOI PMC
Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, et al. Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res. 2007;67:3010–7. 10.1158/0008-5472.Can-06-4328. 10.1158/0008-5472.Can-06-4328 PubMed DOI
Seno JD, Dynlacht JR. Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shock. J Cell Physiol. 2004;199:157–70. 10.1002/jcp.10475. 10.1002/jcp.10475 PubMed DOI
Karakostis K, Ponnuswamy A, Fusee LT, Bailly X, Laguerre L, Worall E, et al. p53 mRNA and p53 protein structures have evolved independently to interact with MDM2. Mol Biol Evol. 2016;33:1280–92. 10.1093/molbev/msw012. 10.1093/molbev/msw012 PubMed DOI
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, et al. Adaptive homeostasis and the p53 isoform network. EMBO Rep. 2021;22:e53085. 10.15252/embr.202153085. 10.15252/embr.202153085 PubMed DOI PMC
Ashur-Fabian O, Avivi A, Trakhtenbrot L, Adamsky K, Cohen M, Kajakaro G, et al. Evolution of p53 in hypoxia-stressed Spalax mimics human tumor mutation. Proc Natl Acad Sci USA. 2004;101:12236–41. 10.1073/pnas.0404998101. 10.1073/pnas.0404998101 PubMed DOI PMC
Fang X, Nevo E, Han L, Levanon EY, Zhao J, Avivi A, et al. Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax. Nat Commun. 2014;5:3966. 10.1038/ncomms4966. 10.1038/ncomms4966 PubMed DOI
Quina AS, Bastos-Silveira C, Minarro M, Ventura J, Jimenez R, Paulo OS, et al. p53 gene discriminates two ecologically divergent sister species of pine voles. Heredity. 2015;115:444–51. 10.1038/hdy.2015.44. 10.1038/hdy.2015.44 PubMed DOI PMC
Pradhan MR, Siau JW, Kannan S, Nguyen MN, Ouaray Z, Kwoh CK, et al. Simulations of mutant p53 DNA binding domains reveal a novel druggable pocket. Nucleic Acids Res. 2019;47:1637–52. 10.1093/nar/gky1314. 10.1093/nar/gky1314 PubMed DOI PMC
Barakat K, Issack BB, Stepanova M, Tuszynski J. Effects of temperature on the p53-DNA binding interactions and their dynamical behavior: comparing the wild type to the R248Q mutant. PLoS ONE. 2011;6:e27651. 10.1371/journal.pone.0027651. 10.1371/journal.pone.0027651 PubMed DOI PMC
Batchelor E, Loewer A, Mock C, Lahav G. Stimulus-dependent dynamics of p53 in single cells. Mol Syst Biol. 2011;17. ARTN 488. 10.1038/msb.2011.20. PubMed PMC
Harper CV, Woodcock DJ, Lam C, Garcia-Albornoz M, Adamson A, Ashall L, et al. Temperature regulates NF-kappa B dynamics and function through timing of A20 transcription. Proc Natl Acad Sci USA. 2018;115:E5243–E5249. 10.1073/pnas.1803609115. 10.1073/pnas.1803609115 PubMed DOI PMC
Gu ZT, Wang H, Li L, Liu YS, Deng XB, Huo SF, et al. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Sci Rep. 2014;4:4469. 10.1038/srep04469. 10.1038/srep04469 PubMed DOI PMC
Gong L, Zhang Q, Pan X, Chen S, Yang L, Liu B, et al. p53 protects cells from death at the heatstroke threshold temperature. Cell Rep. 2019;29:3693–707.e3695. 10.1016/j.celrep.2019.11.032. 10.1016/j.celrep.2019.11.032 PubMed DOI
Logan IR, McNeill HV, Cook S, Lu XH, Meek DW, Fuller-Pace FV, et al. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage. Nucleic Acids Res. 2009;37:2962–73. 10.1093/nar/gkp180. 10.1093/nar/gkp180 PubMed DOI PMC
Boysen M, Kityk R, Mayer MP. Hsp70- and Hsp90-mediated regulation of the conformation of p53 DNA binding domain and p53 cancer variants. Mol Cell. 2019;74:831–43.e834. 10.1016/j.molcel.2019.03.032. 10.1016/j.molcel.2019.03.032 PubMed DOI
Hagn F, Lagleder S, Retzlaff M, Rohrberg J, Demmer O, Richter K, et al. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat Struct Mol Biol. 2011;18:1086–93. 10.1038/nsmb.2114. 10.1038/nsmb.2114 PubMed DOI
Babamohamadi M, Babaei E, Ahmed Salih B, Babamohammadi M, Jalal Azeez H, Othman G. Recent findings on the role of wild-type and mutant p53 in cancer development and therapy. Front Mol Biosci. 2022;9:903075. 10.3389/fmolb.2022.903075. 10.3389/fmolb.2022.903075 PubMed DOI PMC
Sulak M, Fong L, Mika K, Chigurupati S, Yon L, Mongan NP, et al. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants. Elife 2016;5. 10.7554/eLife.11994 PubMed PMC
Padariya M, Jooste ML, Hupp T, Fahraeus R, Vojtesek B, Vollrath F, et al. The elephant evolved p53 isoforms that escape MDM2-mediated repression and cancer. Mol Biol Evol. 2022;39. 10.1093/molbev/msac149. PubMed PMC
Vollrath F. Uncoupling elephant TP53 and cancer. Trends Ecol Evol. 2023;38:705–7. 10.1016/j.tree.2023.05.011. 10.1016/j.tree.2023.05.011 PubMed DOI
Robinson BR, Netherton JK, Ogle RA, Baker MA. Testicular heat stress, a historical perspective and two postulates for why male germ cells are heat sensitive. Biol Rev Camb Philos Soc. 2023;98:603–22. 10.1111/brv.12921. 10.1111/brv.12921 PubMed DOI
Tejada-Martinez D, de Magalhaes JP, Opazo JC. Positive selection and gene duplications in tumour suppressor genes reveal clues about how cetaceans resist cancer. Proc Biol Sci. 2021;288:20202592. 10.1098/rspb.2020.2592. 10.1098/rspb.2020.2592 PubMed DOI PMC
Bartas M, Brazda V, Volna A, Cerven J, Pecinka P, Zawacka-Pankau JE. The changes in the p53 protein across the animal kingdom point to its involvement in longevity. Int J Mol Sci. 2021;22. 10.3390/ijms22168512. PubMed PMC
Abegglen LM, Caulin AF, Chan A, Lee K, Robinson R, Campbell MS, et al. Potential mechanisms for cancer resistance in elephants and comparative cellular response to DNA damage in humans. JAMA. 2015;314:1850–60. 10.1001/jama.2015.13134. 10.1001/jama.2015.13134 PubMed DOI PMC
Tollis M, Ferris E, Campbell MS, Harris VK, Rupp SM, Harrison TM, et al. Elephant genomes reveal accelerated evolution in mechanisms underlying disease defenses. Mol Biol Evol. 2021;38:3606–20. 10.1093/molbev/msab127. 10.1093/molbev/msab127 PubMed DOI PMC
Preston AJ, Rogers A, Sharp M, Mitchell G, Toruno C, Barney BB, et al. Elephant TP53-RETROGENE 9 induces transcription-independent apoptosis at the mitochondria. Cell Death Discov. 2023;9:66. 10.1038/s41420-023-01348-7. 10.1038/s41420-023-01348-7 PubMed DOI PMC