Quantum Chemistry-Based Prediction of Electron Ionization Mass Spectra for Environmental Chemicals
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39110763
PubMed Central
PMC11339729
DOI
10.1021/acs.analchem.4c02589
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
There is a lack of experimental electron ionization high-resolution mass spectra available to assist compound identification. The in silico generation of mass spectra by quantum chemistry can aid annotation workflows, in particular to support the identification of compounds that lack experimental reference spectra, such as environmental chemicals. We present an open-source, semiautomated workflow for the in silico prediction of electron ionization high-resolution mass spectra at 70 eV based on the QCxMS software. The workflow was applied to predict the spectra of 367 environmental chemicals, and the accuracy was evaluated by comparison to experimental reference spectra acquired. The molecular flexibility, number of rotatable bonds, and number of electronegative atoms of a compound were negatively correlated with prediction accuracy. Few analytes are predicted to sufficient accuracy for the direct application of predicted spectra in spectral matching workflows (overall average score 428). The m/z values of the top 5 most abundant ions of predicted spectra rarely match ions in experimental spectra, evidencing the disconnect between simulated fragmentation pathways and empirical reaction mechanisms.
Institute of Computer Science Masaryk University Botanická 554 68a Brno 602 00 Czech Republic
RECETOX Faculty of Science Masaryk University Kotlářská 2 Brno 602 00 Czech Republic
Zobrazit více v PubMed
Price E. J.; Palát J.; Coufaliková K.; Kukučka P.; Codling G.; Vitale C. M.; Koudelka Š.; Klánová J. Open High-Resolution EI+ Spectral Library of Anthropogenic Compounds. Front. Public Health 2021, 9, 622558.10.3389/fpubh.2021.622558. PubMed DOI PMC
MassBank Consortium MassBank EU; http://www.massbank.eu/Contents.
MassBank Consortium MassBank Japan; http://www.massbank.jp/Contents.
Fiehn laboratory at UC Davis MassBank of North America; https://massbank.us/spectra/statistics.
Horai H.; et al. MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. 10.1002/jms.1777. PubMed DOI
Wang M.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. 10.1038/nbt.3597. PubMed DOI PMC
Stettin D.; Poulin R. X.; Pohnert G. Metabolomics Benefits from Orbitrap GC–MS—Comparison of Low- and High-Resolution GC–MS. Metabolites 2020, 10, 143.10.3390/metabo10040143. PubMed DOI PMC
Vinaixa M.; Schymanski E. L.; Neumann S.; Navarro M.; Salek R. M.; Yanes O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends in Anal. Chem. 2016, 78, 23–35. 10.1016/j.trac.2015.09.005. DOI
Krettler C. A.; Thallinger G. G. A map of mass spectrometry-based in silico fragmentation prediction and compound identification in metabolomics. Briefings Bioinf 2021, 22, 1–25. 10.1093/bib/bbab073. PubMed DOI
Wei J. N.; Belanger D.; Adams R. P.; Sculley D. Rapid Prediction of Electron–Ionization Mass Spectrometry Using Neural Networks. ACS Cent. Sci. 2019, 5, 700–708. 10.1021/acscentsci.9b00085. PubMed DOI PMC
Zhu H.; Liu L.; Hassoun S.. Using Graph Neural Networks for Mass Spectrometry Prediction. Machine Learning in Computational Biology, 2020.
Young A.; Röst H.; Wang B. Tandem mass spectrum prediction for small molecules using graph transformers. Nat. Mach. Intell. 2024, 6, 404–416. 10.1038/s42256-024-00816-8. DOI
Murphy M.; Jegelka S.; Fraenkel E.; Kind T.; Healey D.; Butler T.. Efficiently predicting high resolution mass spectra with graph neural networks. Proceedings of the 40th International Conference on Machine Learning; 2023; pp 25549–25562.
Goldman S.; Bradshaw J.; Xin J.; Coley C. Prefix-Tree Decoding for Predicting Mass Spectra from Molecules. Advances in Neural Information Processing Systems 2023, 48548–48572.
Zhu R. L.; Jonas E. Rapid Approximate Subset-Based Spectra Prediction for Electron Ionization-Mass Spectrometry. Anal. Chem. 2023, 95, 2653–2663. 10.1021/acs.analchem.2c02093. PubMed DOI PMC
Grimme S. Towards First Principles Calculation of Electron Impact Mass Spectra of Molecules. Angew. Chem., Int. Ed. 2013, 52, 6306–6312. 10.1002/anie.201300158. PubMed DOI
Koopman J.; Grimme S. From QCEIMS to QCxMS: A Tool to Routinely Calculate CID Mass Spectra Using Molecular Dynamics. J. Am. Soc. Mass Spectrom. 2021, 32, 1735–1751. 10.1021/jasms.1c00098. PubMed DOI
Bauer C. A.; Grimme S. How to Compute Electron Ionization Mass Spectra from First Principles. J. Phys. Chem. A 2016, 120, 3755–3766. 10.1021/acs.jpca.6b02907. PubMed DOI
Bauer C. A.; Grimme S. First principles calculation of electron ionization mass spectra for selected organic drug molecules. Org. Biomol. Chem. 2014, 12, 8737–8744. 10.1039/C4OB01668H. PubMed DOI
Koopman J.; Grimme S. Calculation of Electron Ionization Mass Spectra with Semiempirical GFNn-xTB Methods. ACS Omega 2019, 4, 15120–15133. 10.1021/acsomega.9b02011. PubMed DOI PMC
Grimme S.; Bannwarth C.; Shushkov P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. 10.1021/acs.jctc.7b00118. PubMed DOI
Bannwarth C.; Ehlert S.; Grimme S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. 10.1021/acs.jctc.8b01176. PubMed DOI
Ásgeirsson V.; Bauer C. A.; Grimme S. Quantum chemical calculation of electron ionization mass spectra for general organic and inorganic molecules. Chem. Sci. 2017, 8, 4879–4895. 10.1039/C7SC00601B. PubMed DOI PMC
Wang S.; Kind T.; Bremer P. L.; Tantillo D. J.; Fiehn O. Beyond the Ground State: Predicting Electron Ionization Mass Spectra Using Excited-State Molecular Dynamics. J. Chem. Inf. Model. 2022, 62, 4403–4410. 10.1021/acs.jcim.2c00597. PubMed DOI
Schreckenbach S. A.; Anderson J. S.; Koopman J.; Grimme S.; Simpson M. J.; Jobst K. J. Predicting the Mass Spectra of Environmental Pollutants Using Computational Chemistry: A Case Study and Critical Evaluation. J. Am. Soc. Mass Spectrom. 2021, 32, 1508–1518. 10.1021/jasms.1c00078. PubMed DOI
Lee J.; Kind T.; Tantillo D. J.; Wang L.-P.; Fiehn O. Evaluating the Accuracy of the QCEIMS Approach for Computational Prediction of Electron Ionization Mass Spectra of Purines and Pyrimidines. Metabolites 2022, 12, 68.10.3390/metabo12010068. PubMed DOI PMC
Wang S.; Kind T.; Tantillo D. J.; Fiehn O. Predicting in silico electron ionization mass spectra using quantum chemistry. J. Cheminf. 2020, 12, 63.10.1186/s13321-020-00470-3. PubMed DOI PMC
Wang S.; Kind T.; Bremer P. L.; Tantillo D. J.; Fiehn O. Quantum Chemical Prediction of Electron Ionization Mass Spectra of Trimethylsilylated Metabolites. Anal. Chem. 2022, 94, 1559–1566. 10.1021/acs.analchem.1c02838. PubMed DOI
Sander T.; Freyss J.; von Korff M.; Rufener C. DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. 10.1021/ci500588j. PubMed DOI
Rojas W. Y.; Hecht H.; Ahmad Z.. RECETOX/ei_spectra_predictions: v0.5; 2024, https://github.com/RECETOX/ei_spectra_predictions.
Troják M.; Hecht H.; Čech M.; Price E. J. MSMetaEnhancer: A Python package for mass spectra metadata annotation. Journal of Open Source Software 2022, 7, 4494.10.21105/joss.04494. DOI
Dral P. O.; Wu X.; Spörkel L.; Koslowski A.; Weber W.; Steiger R.; Scholten M.; Thiel W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Theory, Implementation, and Parameters. J. Chem. Theory Comput. 2016, 12, 1082–1096. 10.1021/acs.jctc.5b01046. PubMed DOI PMC
Price E. J.; Palát J.; Coufaliková K.; Kukučka P.; Codling G.; Vitale C. M.; Koudelka Š.; Klánová J.. RECETOX Exposome HR-[EI+]-MS library; 2021, 10.5281/zenodo.4471217. PubMed DOI PMC
Barca G. M. J.; et al. Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 2020, 152, 154102.10.1063/5.0005188. PubMed DOI
Djoumbou Feunang Y.; Eisner R.; Knox C.; Chepelev L.; Hastings J.; Owen G.; Fahy E.; Steinbeck C.; Subramanian S.; Bolton E.; Greiner R.; Wishart D. S. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminf. 2016, 8, 61.10.1186/s13321-016-0174-y. PubMed DOI PMC
Landrum G.; et al. rdkit/rdkit: 2023_09_3 (Q3 2023) Release; 2023.
Huber F.; Verhoeven S.; Meijer C.; Spreeuw H.; Castilla E.; Geng C.; van der Hooft J.; Rogers S.; Belloum A.; Diblen F.; Spaaks J. matchms - processing and similarity evaluation of mass spectrometry data. Journal of Open Source Software 2020, 5, 2411.10.21105/joss.02411. DOI
Virtanen P.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. 10.1038/s41592-019-0686-2. PubMed DOI PMC
The pandas development team pandas-dev/pandas: Pandas; https://github.com/pandas-dev/pandas.
Stein S. E. Chemical substructure identification by mass spectral library searching. J. Am. Soc. Mass Spectrom. 1995, 6, 644–655. 10.1016/1044-0305(95)00291-K. PubMed DOI
Cooper B. T.; Yan X.; Simón-Manso Y.; Tchekhovskoi D. V.; Mirokhin Y. A.; Stein S. E. Hybrid Search: A Method for Identifying Metabolites Absent from Tandem Mass Spectrometry Libraries. Anal. Chem. 2019, 91, 13924–13932. 10.1021/acs.analchem.9b03415. PubMed DOI PMC
Li Y.; Kind T.; Folz J.; Vaniya A.; Mehta S. S.; Fiehn O. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification. Nat. Methods 2021, 18, 1524–1531. 10.1038/s41592-021-01331-z. PubMed DOI
Rojas W. Y.RECETOX Spectral Similarity Top 5 Peaks Galaxy Workflow and History; 2024, https://zenodo.org/records/10842560.
Rojas W. Y.RECETOX Spectral Similarity All Peaks Galaxy Workflow and History; 2024, https://zenodo.org/records/10842462.
Bannwarth C.; Caldeweyher E.; Ehlert S.; Hansen A.; Pracht P.; Seibert J.; Spicher S.; Grimme S. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 2021, 11, 1–49. 10.1002/wcms.1493. DOI
von Korff M.; Sander T.. About Complexity and Self-Similarity of Chemical Structures in Drug Discovery. Chaos and Complex Systems; Springer-Verlag: Berlin, Heidelberg, 2013; pp 301–306.
Hecht H.QCxMS prediction of alkyl halides comparison of GFN1-xTB and GFN2-xTB; 2024, https://zenodo.org/records/10839047.
Khanna V.; Ranganathan S. Physiochemical property space distribution among human metabolites, drugs and toxins. BMC Bioinf 2009, 10, 1–18. 10.1186/1471-2105-10-S15-S10. PubMed DOI PMC
Nelson T. R.; White A. J.; Bjorgaard J. A.; Sifain A. E.; Zhang Y.; Nebgen B.; Fernandez-Alberti S.; Mozyrsky D.; Roitberg A. E.; Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem. Rev. 2020, 120, 2215–2287. 10.1021/acs.chemrev.9b00447. PubMed DOI
Sarojini D.; Burrows-Schilling C.; Thomas K.; Mizumoto C.. Towards Developing a Guide to Choosing National High-Performance Computing Resources. Practice and Experience in Advanced Research Computing; New York, 2023; pp 382–385.
IDC Corporate High Performance Computing in the EU: Progress on the Implementation of the European HPC Strategy; 2015; pp 1–137.
RECETOX Mirrorplots for “Quantum chemistry based prediction of electron ionization mass spectra for environmental chemicals”; 2024, https://zenodo.org/records/12784293. PubMed PMC
Quantum Chemistry-Based Prediction of Electron Ionization Mass Spectra for Environmental Chemicals