Abiotic Stresses in Plants: From Molecules to Environment

. 2024 Jul 24 ; 25 (15) : . [epub] 20240724

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu úvodníky, úvodní články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39125642

Plants face several challenges during their growth and development, including environmental factors (mainly abiotic ones), that can lead to/induce oxidative stress-specifically, adverse temperatures (both hot and cold), drought, salinity, radiation, nutrient deficiency (or excess), toxic metals, waterlogging, air pollution, and mechanical stimuli [...].

Zobrazit více v PubMed

Des Marais D.L., Juenger T.E. Pleiotropy, Plasticity, and the Evolution of Plant Abiotic Stress Tolerance. Ann. N. Y. Acad. Sci. 2010;1206:56–79. doi: 10.1111/j.1749-6632.2010.05703.x. PubMed DOI

Ding Y., Yang S. Surviving and Thriving: How Plants Perceive and Respond to Temperature Stress. Dev. Cell. 2022;57:947–958. doi: 10.1016/j.devcel.2022.03.010. PubMed DOI

Guy C., Kaplan F., Kopka J., Selbig J., Hincha D.K. Metabolomics of Temperature Stress. Physiol. Plant. 2008;132:220–235. doi: 10.1111/j.1399-3054.2007.00999.x. PubMed DOI

Ozturk M., Turkyilmaz Unal B., García-Caparrós P., Khursheed A., Gul A., Hasanuzzaman M. Osmoregulation and Its Actions during the Drought Stress in Plants. Physiol. Plant. 2021;172:1321–1335. doi: 10.1111/ppl.13297. PubMed DOI

Rai G.K., Mishra S., Chouhan R., Mushtaq M., Chowdhary A.A., Rai P.K., Kumar R.R., Kumar P., Perez-Alfocea F., Colla G. Plant Salinity Stress, Sensing, and Its Mitigation through WRKY. Front. Plant Sci. 2023;14:1238507. doi: 10.3389/fpls.2023.1238507. PubMed DOI PMC

Kovács E., Keresztes Á. Effect of Gamma and UV-B/C Radiation on Plant Cells. Micron. 2002;33:199–210. doi: 10.1016/S0968-4328(01)00012-9. PubMed DOI

Rai N., O’Hara A., Farkas D., Safronov O., Ratanasopa K., Wang F., Lindfors A.V., Jenkins G.I., Lehto T., Salojärvi J., et al. The Photoreceptor UVR8 Mediates the Perception of Both UV-B and UV-A Wavelengths up to 350 Nm of Sunlight with Responsivity Moderated by Cryptochromes. Plant Cell Environ. 2020;43:1513–1527. doi: 10.1111/pce.13752. PubMed DOI

Shi C., Liu H. How Plants Protect Themselves from Ultraviolet-B Radiation Stress. Plant Physiol. 2021;187:1096–1103. doi: 10.1093/plphys/kiab245. PubMed DOI PMC

Yavari N., Tripathi R., Wu B.-S., MacPherson S., Singh J., Lefsrud M. The Effect of Light Quality on Plant Physiology, Photosynthetic, and Stress Response in Arabidopsis Thaliana Leaves. PLoS ONE. 2021;16:e0247380. doi: 10.1371/journal.pone.0247380. PubMed DOI PMC

Volná A., Červeň J., Nezval J., Pech R., Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int. J. Mol. Sci. 2024;25:7066. doi: 10.3390/ijms25137066. PubMed DOI PMC

Lopez G., Ahmadi S.H., Amelung W., Athmann M., Ewert F., Gaiser T., Gocke M.I., Kautz T., Postma J., Rachmilevitch S., et al. Nutrient Deficiency Effects on Root Architecture and Root-to-Shoot Ratio in Arable Crops. Front. Plant Sci. 2023;13:1067498. doi: 10.3389/fpls.2022.1067498. PubMed DOI PMC

Morcuende R., Bari R., Gibon Y., Zheng W., Pant B.D., Bläsing O., Usadel B., Czechowski T., Udvardi M.K., Stitt M., et al. Genome-Wide Reprogramming of Metabolism and Regulatory Networks of Arabidopsis in Response to Phosphorus. Plant Cell Environ. 2007;30:85–112. doi: 10.1111/j.1365-3040.2006.01608.x. PubMed DOI

Kamali Aliabad K., Zamani E., Shahbazi Manshadi S. Investigation of Deficiency and Excess Nutrients Under in Vitro Culture Conditions in Petunia Hybrida. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2024 doi: 10.1007/s40011-024-01652-x. DOI

Feng Z., Ji S., Ping J., Cui D. Recent Advances in Metabolomics for Studying Heavy Metal Stress in Plants. TrAC Trends Anal. Chem. 2021;143:116402. doi: 10.1016/j.trac.2021.116402. DOI

Ghuge S.A., Nikalje G.C., Kadam U.S., Suprasanna P., Hong J.C. Comprehensive Mechanisms of Heavy Metal Toxicity in Plants, Detoxification, and Remediation. J. Hazard. Mater. 2023;450:131039. doi: 10.1016/j.jhazmat.2023.131039. PubMed DOI

Ranjan A., Rajput V.D., Minkina T., Bauer T., Chauhan A., Jindal T. Nanoparticles Induced Stress and Toxicity in Plants. Environ. Nanotechnol. Monit. Manag. 2021;15:100457. doi: 10.1016/j.enmm.2021.100457. DOI

Ramegowda V., Da Costa M.V.J., Harihar S., Karaba N.N., Sreeman S.M. Chapter 17—Abiotic and Biotic Stress Interactions in Plants: A Cross-Tolerance Perspective. In: Hossain M.A., Liu F., Burritt D.J., Fujita M., Huang B., editors. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants. Academic Press; Cambridge, MA, USA: 2020. pp. 267–302.

Zulfiqar F., Ashraf M. Nanoparticles Potentially Mediate Salt Stress Tolerance in Plants. Plant Physiol. Biochem. 2021;160:257–268. doi: 10.1016/j.plaphy.2021.01.028. PubMed DOI

Xiong L., Zhu J.-K. Molecular and Genetic Aspects of Plant Responses to Osmotic Stress. Plant Cell Environ. 2002;25:131–139. doi: 10.1046/j.1365-3040.2002.00782.x. PubMed DOI

Fàbregas N., Yoshida T., Fernie A.R. Role of Raf-like Kinases in SnRK2 Activation and Osmotic Stress Response in Plants. Nat. Commun. 2020;11:6184. doi: 10.1038/s41467-020-19977-2. PubMed DOI PMC

Zahra N., Hafeez M.B., Shaukat K., Wahid A., Hussain S., Naseer R., Raza A., Iqbal S., Farooq M. Hypoxia and Anoxia Stress: Plant Responses and Tolerance Mechanisms. J. Agron. Crop Sci. 2021;207:249–284. doi: 10.1111/jac.12471. DOI

Parent C., Capelli N., Berger A., Crèvecoeur M., Dat J.F. An Overview of Plant Responses to Soil Waterlogging. Plant Stress. 2008;2:20–27.

León J., Castillo M.C., Gayubas B. The Hypoxia–Reoxygenation Stress in Plants. J. Exp. Bot. 2021;72:5841–5856. doi: 10.1093/jxb/eraa591. PubMed DOI PMC

Saxena P., Kulshrestha U. Biochemical Effects of Air Pollutants on Plants. In: Kulshrestha U., Saxena P., editors. Plant Responses to Air Pollution. Springer; Singapore: 2016. pp. 59–70.

Lovett G.M., Tear T.H., Evers D.C., Findlay S.E.G., Cosby B.J., Dunscomb J.K., Driscoll C.T., Weathers K.C. Effects of Air Pollution on Ecosystems and Biological Diversity in the Eastern United States. Ann. N. Y. Acad. Sci. 2009;1162:99–135. doi: 10.1111/j.1749-6632.2009.04153.x. PubMed DOI

Brenya E., Pervin M., Chen Z.-H., Tissue D.T., Johnson S., Braam J., Cazzonelli C.I. Mechanical Stress Acclimation in Plants: Linking Hormones and Somatic Memory to Thigmomorphogenesis. Plant Cell Environ. 2022;45:989–1010. doi: 10.1111/pce.14252. PubMed DOI

Hamant O., Haswell E.S. Life behind the Wall: Sensing Mechanical Cues in Plants. BMC Biol. 2017;15:59. doi: 10.1186/s12915-017-0403-5. PubMed DOI PMC

Harborne J.B. Ciba Foundation Symposium 154—Bioactive Compounds from Plants. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2007. Role of Secondary Metabolites in Chemical Defence Mechanisms in Plants; pp. 126–139. PubMed

Suprasanna P. Plant Abiotic Stress Tolerance: Insights into Resilience Build-Up. J. Biosci. 2020;45:120. doi: 10.1007/s12038-020-00088-5. PubMed DOI

Rhodes C.J. Soil Erosion, Climate Change and Global Food Security: Challenges and Strategies. Sci. Prog. 2014;97:97–153. doi: 10.3184/003685014X13994567941465. PubMed DOI PMC

Sewelam N., Brilhaus D., Bräutigam A., Alseekh S., Fernie A.R., Maurino V.G. Molecular Plant Responses to Combined Abiotic Stresses Put a Spotlight on Unknown and Abundant Genes. J. Exp. Bot. 2020;71:5098–5112. doi: 10.1093/jxb/eraa250. PubMed DOI

Zandalinas S.I., Mittler R. Plant Responses to Multifactorial Stress Combination. New Phytol. 2022;234:1161–1167. doi: 10.1111/nph.18087. PubMed DOI

Leisner C.P., Potnis N., Sanz-Saez A. Crosstalk and Trade-Offs: Plant Responses to Climate Change-Associated Abiotic and Biotic Stresses. Plant Cell Environ. 2023;46:2946–2963. doi: 10.1111/pce.14532. PubMed DOI

Ambrosino L., Colantuono C., Diretto G., Fiore A., Chiusano M.L. Bioinformatics Resources for Plant Abiotic Stress Responses: State of the Art and Opportunities in the Fast Evolving-Omics Era. Plants. 2020;9:591. doi: 10.3390/plants9050591. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...