MMP-14 Exhibits Greater Expression, Content and Activity Compared to MMP-15 in Human Renal Carcinoma

. 2024 Jul 25 ; 25 (15) : . [epub] 20240725

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39125675

Membrane-type metalloproteinases (including MMP-14 and MMP-15) are enzymes involved in the degradation of extracellular matrix components. In cancer, they are involved in processes such as cellular invasion, angiogenesis and metastasis. Therefore, the aim of this study was to evaluate the expression, content and activity of MMP-14 and MMP-15 in human renal cell carcinoma. Samples of healthy kidney tissue (n = 20) and tissue from clear-cell kidney cancer (n = 20) were examined. The presence and contents of the MMPs were assessed using Western blot and ELISA techniques, respectively. Their activity-both actual and specific-was evaluated using fluorimetric analysis. Both control and cancer human kidney tissues contain MMP-14 and MMP-15 enzymes in the form of high-molecular-weight complexes. Moreover, these enzymes occur in both active and latent forms. Their content in cancer tissues is very similar, but with a noteworthy decrease in content with an increase in the kidney cancer grade for both membrane-type metalloproteinases. Even more notable is the highest content of the investigated enzymes represented by MMP-14 in the control tissues. Considering the actual and specific activity outcomes, MMP-14 dominates over MMP-15 in all of the investigated tissues. Nevertheless, we also noted a significant enhancement of the activity of both metalloproteinases with an increase in the grade of renal cancer. The expression and activity of both enzymes were detected in all examined renal cancer tissues. However, our findings suggest that transmembrane metalloproteinase 14 (MMP-14) plays a much more significant and essential role than MMP-15 in the studied renal carcinoma tissues. Therefore, it seems that MMP-14 could be a promising target in the diagnosis, prognosis and therapy of renal cell carcinoma.

Zobrazit více v PubMed

Netter F. Atlas of Human Anatomy. 6th ed. Elsevier; Amsterdam, The Netherlands: 2014.

Bochenek A., Reicher M. Anatomia Człowieka Tom II. PZWL; Warsaw, Poland: 2004. pp. 476–537.

Górski J. Fizjologiczne Podstawy Wysiłku Fizycznego. PZWL; Warsaw, Poland: 2008. pp. 368–387.

Boor P., Sebekova K., Ostendorf T., Floege J. Treatment targets in renal fibrosis. Nephrol. Dial. Transpl. 2007;22:3391–3407. doi: 10.1093/ndt/gfm393. PubMed DOI

Catania J.M., Chen G., Parrish A.R. Role of matrix metalloproteinases in renal pathophysiologies. Am. J. Physiol. Renal. Physiol. 2007;292:F905–F911. doi: 10.1152/ajprenal.00421.2006. PubMed DOI

Pardo A., Selman M. Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proc. Am. Thorac. Soc. 2006;3:383–388. doi: 10.1513/pats.200601-012TK. PubMed DOI

Castro-Castro A., Marchesin V., Monteiro P., Lodillinsky C., Rossé C., Chavrier P. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell Invasion. Annu. Rev. Cell Dev. Biol. 2016;32:555–576. doi: 10.1146/annurev-cellbio-111315-125227. PubMed DOI

Pittayapruek P., Meephansan J., Prapapan O., Komine M., Ohtsuki M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016;17:868. doi: 10.3390/ijms17060868. PubMed DOI PMC

Watkins G.A., Fung Jones E., Scott Shell M., VanBrocklin H.F., Pan M.-H., Hanrahan S.M., Feng J.J., He J., Sounni N.E., Dill K.A., et al. Development of an optimized activatable MMP-14 targeted SPECT imaging probe. Bioorg. Med. Chem. 2009;17:653–659. doi: 10.1016/j.bmc.2008.11.078. PubMed DOI PMC

Amar S., Smith L., Fields G.B. Matrix metalloproteinase collagenolysis in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:1940–1951. doi: 10.1016/j.bbamcr.2017.04.015. PubMed DOI PMC

Yoshizaki T., Sato H., Furukawa M. Recent advances in the regulation of matrix metalloproteinase 2 activation: From basic research to clinical implication (Review) Oncol. Rep. 2002;9:607–611. doi: 10.3892/or.9.3.607. PubMed DOI

Ingvarsen S., Madsen D.H., Hillig T., Lund L.R., Holmbeck K., Behrendt N., Engelholm L.H. Dimerization of endogenous MT1-MMP is a regulatory step in the activation of the 72-kDa gelatinase MMP-2 on fibroblasts and fibrosarcoma cells. Biol. Chem. 2008;389:943–953. doi: 10.1515/BC.2008.097. PubMed DOI

Itoh Y., Ito N., Nagase H., Evans R.D., Bird S.A., Seiki M. Cell surface collagenolysis requires homodimerization of the membrane-bound collagenase MT1-MMP. Mol. Biol. Cell. 2006;17:5390–5399. doi: 10.1091/mbc.e06-08-0740. PubMed DOI PMC

Itoh Y., Ito N., Nagase H., Seiki M. The second dimer interface of MT1-MMP, the transmembrane domain, is essential for ProMMP-2 activation on the cell surface. J. Biol. Chem. 2008;283:13053–13062. doi: 10.1074/jbc.M709327200. PubMed DOI PMC

Sabeh F., Ota I., Holmbeck K., Birkedal-Hansen H., Soloway P., Balbin M., Lopez-Otin C., Shapiro S., Inada M., Weiss S.J. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J. Cell Biol. 2004;167:769–781. doi: 10.1083/jcb.200408028. PubMed DOI PMC

Szabova L., Chrysovergis K., Yamada S., Holmbeck K. MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene. 2008;27:3274–3281. doi: 10.1038/sj.onc.1210982. PubMed DOI

Andreucci M., Provenzano M., Faga T., Michael A., Patella G., Mastroroberto P., Serraino G.F., Bracale U.M., Ielapi N., Serra R. Aortic Aneurysms, Chronic Kidney Disease and Metalloproteinases. Biomolecules. 2021;11:194. doi: 10.3390/biom11020194. PubMed DOI PMC

Turunen S.P., Tatti-Bugaeva O., Lehti K. Membrane-type matrix metalloproteases as diverse effectors of cancer progression. Pt ABiochim. Biophys. Acta. 2017;1864:1974–1988. doi: 10.1016/j.bbamcr.2017.04.002. PubMed DOI

Mylona E., Nomikos A., Magkou C., Kamberou M., Papassideri I., Keramopoulos A., Nakopoulou L. The clinicopathological and prognostic significance of membrane type 1 matrix metalloproteinase (MT1-MMP) and MMP-9 according to their localization in invasive breast carcinoma. Histopathology. 2007;50:338–347. doi: 10.1111/j.1365-2559.2007.02615.x. PubMed DOI

Shanbhogue A.K., Prasad S.R., Takahashi N., Vikram R., Sahani D.V. Recent advances in cytogenetics and molecular biology of adult hepatocellular tumors: Implications for imaging and management. Radiology. 2011;258:673–693. doi: 10.1148/radiol.10100376. PubMed DOI

Zhang L., Jin S., Wei Y., Wang C., Zou H., Hu J., Jia W., Pang L. Prognostic Significance of Matrix Metalloproteinase 14 in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin. Lab. 2020;66:745. doi: 10.7754/Clin.Lab.2019.190831. PubMed DOI

[(accessed on 23 July 2024)]. Available online: http://www.uniprot.org/uniprot/P45452.

[(accessed on 23 July 2024)]. Available online: https://www.wikigenes.org/e/gene/e/4322.html.

[(accessed on 23 July 2024)]. Available online: http://www.genecards.org/cgi-bin/carddisp.pl.

Kitagawa Y., Kunimi K., Uchibayashi T., Sato H., Namiki M. Expression of messenger RNAs for membrane-type 1, 2, and 3 matrix metalloproteinases in human renal cell carcinomas. Pt 1J. Urol. 1999;162:905–909. doi: 10.1097/00005392-199909010-00088. PubMed DOI

Bosman F.T., Stamenkovic I. Functional structure and composition of the extracellular matrix. J. Pathol. 2003;200:423–428. doi: 10.1002/path.1437. PubMed DOI

Bonnans C., Chou J., Werb Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014;15:786–801. doi: 10.1038/nrm3904. PubMed DOI PMC

Chou C.J., Affolter M., Kussmann M. A nutrigenomics view of protein intake: Macronutrient, bioactive peptides, and protein turnover. Prog. Mol. Biol. Transl. Sci. 2012;108:51–74. doi: 10.1016/B978-0-12-398397-8.00003-4. PubMed DOI

Qiao Z.K., Li Y.L., Lu H.T., Wang K.L., Xu W.H. Expression of tissue levels of matrix metalloproteinases and tissue inhibitors of metalloproteinases in renal cell carcinoma. World J. Surg. Oncol. 2013;11:1. doi: 10.1186/1477-7819-11-1. PubMed DOI PMC

Amin M.B., Edge S., Greene F., Byrd D.R., Brookland R.K., Washington M.K., Gershenwald J.E., Compton C.C., Hess K.R., Sullivan D.C., et al., editors. AJCC Cancer Staging Manual. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2017.

Cannon G.M., Jr., Getzenburg R.H. Urinary matrix metalloproteinases activity is not significantly altered in patients with renal cell carcinoma. Urology. 2006;67:848–850. doi: 10.1016/j.urology.2005.10.029. PubMed DOI

Genovese F., Manresa A.A., Leeming D.J., Karsdal M.A., Boor P. The extracellular matrix in the kidney: A source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014;7:4. doi: 10.1186/1755-1536-7-4. PubMed DOI PMC

Lee D.G., Yang K.E., Hwang J.W., Kang H.S., Lee S.Y., Choi S., Shin J., Jang I.S. An, as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS ONE. 2016;11:e0160557. doi: 10.1371/journal.pone.0160557. PubMed DOI PMC

Shi Z.D., Ji X.Y., Qazi H., Tarbell J.M. Interstitial flow promotes vascular fibroblast myofibroblast smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1225–H1234. doi: 10.1152/ajpheart.00369.2009. PubMed DOI PMC

Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...