Temporal Analysis of DSB Repair Outcome in Caenorhabditis elegans Meiosis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Auxin, Caenorhabditis elegans, Crossovers, Germline, Meiosis,
- MeSH
- Caenorhabditis elegans * genetika MeSH
- dvouřetězcové zlomy DNA * MeSH
- meióza * MeSH
- oprava DNA MeSH
- proteiny Caenorhabditis elegans metabolismus genetika MeSH
- zárodečné buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny Caenorhabditis elegans MeSH
The Caenorhabditis elegans germline is arranged spatiotemporally and is therefore a powerful model system for the interrogation of meiotic molecular dynamics. Coupling this property with the temporal control that the auxin-inducible degron (AID) system allows can unveil new/unappreciated roles for critical meiotic factors in specific germline regions. Here we describe a widely used approach for the introduction of degron tags to specific targets and provide a procedure for applying the AID system to C. elegans meiotic DSB repair dynamics in the germline.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Biology The University of Iowa Iowa City IA USA
Zobrazit více v PubMed
Yesbolatova A, Saito Y, Kitamoto N et al (2020) The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat Commun 11:5701 PubMed DOI PMC
Ashley GE, Duong T, Levenson MT et al (2021) An expanded auxin-inducible degron toolkit for Caenorhabditis elegans. Genetics 217:iyab006 PubMed DOI PMC
Zhang L, Ward JD, Cheng Z et al (2015) The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development 142:4374–4384 PubMed PMC
Hicks T, Trivedi S, Eppert M et al (2022) Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep 40:111403 PubMed DOI
Tan X, Calderon-Villalobos LI, Sharon M, Zheng C et al (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645 PubMed DOI
Divekar NS, Davis-Roca AC, Zhang L et al (2021) A degron-based strategy reveals new insights into Aurora B function in C. elegans. PLoS Genet 17:e1009567 PubMed DOI PMC
Ghanta KS, Ishidate T, Mello CC (2021) Microinjection for precision genome editing in Caenorhabditis elegans. STAR Protoc 2:100748 PubMed DOI PMC
Raices M, Bowman R, Smolikove S et al (2021) Aging negatively impacts DNA repair and bivalent formation in the C. elegans germ line. Front Cell Dev Biol 9:695333 PubMed DOI PMC
Paix A, Folkmann A, Goldman DH et al (2017) Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. Proc Natl Acad Sci USA 114:E10745–E10754 PubMed DOI PMC
Hillers KJ, Jantsch V, Martinez-Perez E et al (2017) Meiosis. WormBook 2017:1–43 PubMed DOI
Jaramillo-Lambert A, Ellefson M, Villeneuve AM et al (2007) Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev Biol 308:206–221 PubMed DOI
Hicks T, Koury E, McCabe C et al (2022) R-loop-induced irreparable DNA damage evades checkpoint detection in the C. elegans germline. Nucleic Acids Res 50:8041–8059 PubMed DOI PMC
Yokoo R, Zawadzki KA, Nabeshima K et al (2012) COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 149:75–87 PubMed DOI PMC
Janisiw E, Dello Stritto MR, Jantsch V et al (2018) BRCA1-BARD1 associate with the synaptonemal complex and pro-crossover factors and influence RAD-51 dynamics during Caenorhabditis elegans meiosis. PLoS Genet 14:e1007653 PubMed DOI PMC