Impact of Irpex lenis and Schizophyllum commune endophytic fungi on Perilla frutescens: enhancing nutritional uptake, phytochemicals, and antioxidant potential

. 2024 Aug 10 ; 23 (1) : 226. [epub] 20240810

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39127680
Odkazy

PubMed 39127680
PubMed Central PMC11316333
DOI 10.1186/s12934-024-02491-1
PII: 10.1186/s12934-024-02491-1
Knihovny.cz E-zdroje

BACKGROUND: Endophytic fungi (EF) reside within plants without causing harm and provide benefits such as enhancing nutrients and producing bioactive compounds, which improve the medicinal properties of host plants. Selecting plants with established medicinal properties for studying EF is important, as it allows a deeper understanding of their influence. Therefore, the study aimed to investigate the impact of EF after inoculating the medicinal plant Perilla frutescens, specifically focusing on their role in enhancing medicinal properties. RESULTS: In the current study, the impact of two EF i.e., Irpex lenis and Schizophyllum commune isolated from A. bracteosa was observed on plant Perilla frutescens leaves after inoculation. Plants were divided into four groups i.e., group A: the control group, group B: inoculated with I. lenis; group C: inoculated with S. commune and group D: inoculated with both the EF. Inoculation impact of I. lenis showed an increase in the concentration of chlorophyll a (5.32 mg/g), chlorophyll b (4.46 mg/g), total chlorophyll content (9.78 mg/g), protein (68.517 ± 0.77 mg/g), carbohydrates (137.886 ± 13.71 mg/g), and crude fiber (3.333 ± 0.37%). Furthermore, the plants inoculated with I. lenis showed the highest concentrations of P (14605 mg/kg), Mg (4964.320 mg/kg), Ca (27389.400 mg/kg), and Mn (86.883 mg/kg). The results of the phytochemical analysis also indicated an increased content of total flavonoids (2.347 mg/g), phenols (3.086 mg/g), tannins (3.902 mg/g), and alkaloids (1.037 mg/g) in the leaf extract of P. frutescens inoculated with I. lenis. Thus, overall the best results of inoculation were observed in Group B i.e. inoculated with I. lenis. GC-MS analysis of methanol leaf extract showed ten bioactive constituents, including 9-Octadecenoic acid (Z)-, methyl ester, and hexadecanoic acid, methyl ester as major constituents found in all the groups of P. frutescens leaves. The phenol (gallic acid) and flavonoids (rutin, kaempferol, and quercetin) were also observed to increase after inoculation by HPTLC analysis. The enhancement in the phytochemical content was co-related with improved anti-oxidant potential which was analyzed by DPPH (% Inhibition: 83.45 µg/ml) and FRAP (2.980 µM Fe (II) equivalent) assay as compared with the control group. CONCLUSION: Inoculation with I. lenis significantly enhances the uptake of nutritional constituents, phytochemicals, and antioxidant properties in P. frutescens, suggesting its potential to boost the therapeutic properties of host plants.

Zobrazit více v PubMed

Porras-Alfaro A, Bayman P. Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol. 2011;49:291–315. 10.1146/annurev-phyto-080508-081831. 10.1146/annurev-phyto-080508-081831 PubMed DOI

Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Biol Chem. 2012;19(7):792–8. 10.1016/j.chembiol.2012.06.004.10.1016/j.chembiol.2012.06.004 PubMed DOI

Deng Z, Cao L. Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere. 2017;168:1100–6. 10.1016/j.chemosphere.2016.10.097. 10.1016/j.chemosphere.2016.10.097 PubMed DOI

Elnahal AS, El-Saadony MT, Saad AM, Desoky ES, El-Tahan AM, Rady MM, AbuQamar SF, El-Tarabily KA. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol. 2022;162(4):759–92. 10.1007/s10658-021-02393-7.10.1007/s10658-021-02393-7 DOI

Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prod Rep. 2006;23(5):753–71. 10.1039/b609472b PubMed DOI

Ye HT, Luo SQ, Yang ZN, Wang YS, Ding Q, Wang KF, Yang SX, Wang Y. Endophytic fungi stimulate the concentration of medicinal secondary metabolites in houttuynia cordata thunb. Plant Signal Behav. 2021;16(9):1929731. 10.1080/15592324.2021.1929731. 10.1080/15592324.2021.1929731 PubMed DOI PMC

Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev. 2003;67(4):491–502. 10.1128/MMBR.67.4.491-502.2003. 10.1128/MMBR.67.4.491-502.2003 PubMed DOI PMC

Tidke SA, Kumar RK, Ramakrishna D, Kiran S, Kosturkova G, Gokare RA. Current understanding of endophytes: their relevance, importance, and industrial potentials. J Biotechnol Biochem. 2017;3(3):43–9. 10.9790/264X-03034359.10.9790/264X-03034359 DOI

Strobel G. The emergence of endophytic microbes and their biological promise. J Fungi. 2018;4(2):57. 10.3390/jof4020057.10.3390/jof4020057 PubMed DOI PMC

Devi R, Abdulhaq A, Verma R, Sharma K, Kumar D, Kumar A, Tapwal A, Yadav R, Mohan S. Improvement in the phytochemical content and biological properties of Stevia rebaudiana (Bertoni) bertoni plant using endophytic fungi Fusarium fujikuroi. Plants. 2023;12(5):1151. 10.3390/plants12051151. 10.3390/plants12051151 PubMed DOI PMC

Garyali S, Kumar A, Reddy MS. Taxol production by an endophytic fungus, Fusarium redolens, isolated from himalayan yew. J Microbiol Biotechn. 2013;23(10):1372–80.10.4014/jmb.1305.05070 PubMed DOI

Kaul S, Gupta S, Ahmed M, Dhar MK. Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev. 2012;11:487–505. 10.1007/s11101-012-9260-6.10.1007/s11101-012-9260-6 DOI

Devi R, Verma R, Dhalaria R, Kumar A, Kumar D, Puri S, Thakur M, Chauhan S, Chauhan PP, Nepovimova E, Kuca K. A systematic review on endophytic fungi and its role in the commercial applications. Planta. 2023;257(4):70. 10.1007/s00425-023-04087-2 PubMed DOI

Isah T. Stress and defense responses in plant secondary metabolites production. Biol Res. 2019;52. 10.1186/s40659-019-0246-3. PubMed PMC

Li Z, Xiong K, Wen W, Li L, Xu D. Functional endophytes regulating plant secondary metabolism: current status, prospects and applications. Int J Mol Sci. 2023;24(2):1153. 10.3390/ijms24021153. 10.3390/ijms24021153 PubMed DOI PMC

Shen B. A new golden age of natural products drug discovery. Cell. 2015;163(6):1297–300. 10.1016/j.cell.2015.11.031. 10.1016/j.cell.2015.11.031 PubMed DOI PMC

de Siqueira VM, Conti R, de Araújo JM, Souza-Motta CM. Endophytic fungi from the medicinal plant Lippia sidoides Cham. And their antimicrobial activity. Symbiosis. 2011;53:89–95. 10.1007/s13199-011-0113-7.10.1007/s13199-011-0113-7 DOI

Abdel-Razek AS, El-Naggar ME, Allam A, Morsy OM, Othman SI. Microbial natural products in drug discovery. Processes. 2020;8(4):470. 10.3390/pr8040470.10.3390/pr8040470 DOI

Venieraki A, Dimou M, Katinakis P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell Plant Prot J. 2017;10(2):51–66. 10.1515/hppj-2017-0006.10.1515/hppj-2017-0006 DOI

Raja RR. Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. J Med Plant. 2012;6(3):203–. 10.3923/rjmp.2012.203.213.  13.10.3923/rjmp.2012.203.213 DOI

Venkateshappa SM, Sreenath KP. Potential medicinal plants of Lamiaceae. Am Int J Res Formal Appl Nat Sci. 2013;1(3):82–7.

Hussain M, Bibi Y, Raja NI, Iqbal M, Aslam S, Tahir N, Imran M, Iftikhar A. A review of therapeutic potential of Ajuga bracteosa: a critically endangered plant from Himalaya. J Coast Life Med. 2016;4(11):918–24. 10.12980/jclm.4.2016J6-163.10.12980/jclm.4.2016J6-163 DOI

Gautam R, Jachak SM, Saklani A. Anti-inflammatory effect of Ajuga Bracteosa Wall Ex Benth. Mediated through cyclooxygenase (COX) inhibition. J Ethnopharmacol. 2011;133(2):928–30. 10.1016/j.jep.2010.11.003. 10.1016/j.jep.2010.11.003 PubMed DOI

Kayani WK, Dilshad E, Ahmed T, Ismail H, Mirza B. Evaluation of Ajuga bracteosa for antioxidant, anti-inflammatory, analgesic, antidepressant and anticoagulant activities. BMC Complement Altern Med. 2016;16:1–3. 10.1186/s12906-016-1363-y. 10.1186/s12906-016-1363-y PubMed DOI PMC

Dhyani A, Chopra R, Garg M. A review on nutritional value, functional properties and pharmacological application of perilla (Perilla frutescens L). Biomed Pharmacol J. 2019;12(2):649–60. 10.13005/bpj/1685.10.13005/bpj/1685 DOI

Ahmad RS. A systematic review on multi-nutritional and phytopharmacological importance of Perilla frutescens. Int J Green Pharm. 2022;16(1).

Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandh SA. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog. 2015;82:50–9. 10.1016/j.micpath.2015.04.001. 10.1016/j.micpath.2015.04.001 PubMed DOI

dos Santos Souza B, dos Santos TT. Endophytic fungi in economically important plants: ecological aspects, diversity and potential biotechnological applications. J Bioenergy Food Sci. 2017;4(2):113–26. 10.18067/jbfs.v4i2.121.10.18067/jbfs.v4i2.121 DOI

Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules. 2012;17(9):10754–73. 10.3390/molecules170910754. 10.3390/molecules170910754 PubMed DOI PMC

Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. An endophytic fungus from Nothapodytes foetida that produces Camptothecin. J Nat Prod. 2005;68(12):1717–9. 10.1021/np0502802. 10.1021/np0502802 PubMed DOI

Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol. 2016;7:906. 10.3389/fmicb.2016.00906. 10.3389/fmicb.2016.00906 PubMed DOI PMC

Singh A, Singh DK, Kharwar RN, White JF, Gond SK. Fungal endophytes as efficient sources of plant-derived bioactive com-pounds and their prospective applications in natural product drug discovery: insights, avenues, and challenges. Microorganisms. 2021;9:197. 10.3390/microorganisms9010197. 10.3390/microorganisms9010197 PubMed DOI PMC

Kedar A, Rathod D, Yadav A, Agarkar G, Rai M. Endophytic Phoma sp. isolated from medicinal plants promote the growth of Zea mays. Nusantara Bioscie. 2014;6(2). 10.13057/nusbiosci/n060205.

Vinayarani G, Prakash HS. Fungal endophytes of turmeric (Curcuma longa L.) and their biocontrol potential against pathogens Pythium aphanidermatum and Rhizoctonia solani. World J Microbiol Biotechnol. 2018;34:1–7. 10.1007/s11274-018-2431-x.10.1007/s11274-018-2431-x PubMed DOI

Guo LD, Hyde KD, Liew EC. Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol. 2000;147(3):617–30. 10.1046/j.1469-8137.2000.00716.x PubMed DOI

Aamir S, Sutar S, Singh SK, Baghela A. A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathol Quar. 2015;5(2):74–81. 10.5943/ppq/5/2/6.10.5943/ppq/5/2/6 DOI

Singh V, Upadhyay RS, Sarma BK, Singh HB. Seed bio-priming with Trichoderma Asperellum effectively modulate plant growth promotion in pea. Int J Environ Agric Biotech. 2016;9(3):361–5. 10.5958/2230-732X.2016.00047.4.10.5958/2230-732X.2016.00047.4 DOI

Rai M, Acharya D, Singh A, Varma A. Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza. 2001;11:123–8. 10.1007/s005720100115. 10.1007/s005720100115 PubMed DOI

Huang Z, Liu Q, An B, Wu X, Sun L, Wu P, Liu B, Ma X. Effects of planting density on morphological and photosynthetic characteristics of leaves in different positions on Cunninghamia lanceolata Saplings. Forests. 2021;12(7):853. 10.3390/f12070853.10.3390/f12070853 DOI

Lowery OH, Rosenberg NJ, Farr AL, Randal RJ. Protein measurement with the folin-phenol reagent. J Biol Chem. 1951;193:265–75. 10.1016/S0021-9258(19)52451-6 PubMed DOI

Nehul JN. Studies on effect of various culture media on growth and carbohydrates content in Westiellopsis prolifica janet. Int J Res Biosci Agric Technol. 2018;221–4.

Unuofin JO, Otunola GA, Afolayan AJ. Nutritional evaluation of Kedrostis Africana (L.) Cogn: an edible wild plant of South Africa. Asian Pac J Trop Biomed. 2017;7(5):443–9. 10.1016/j.apjtb.2017.01.016.10.1016/j.apjtb.2017.01.016 DOI

Senila M, Drolc A, Pintar A, Senila L, Levei E. Validation and measurement uncertainty evaluation of the ICP-OES method for the multi-elemental determination of essential and nonessential elements from medicinal plants and their aqueous extracts. J Anal Sci Technol. 2014;5(1):1–9. 10.1186/s40543-014-0037-y.10.1186/s40543-014-0037-y DOI

Subashini R, Rakshitha SU. Phytochemical screening, antimicrobial activity and in vitro antioxidant investigation of methanolic extract of seeds from Helianthus annuus L. Chem Sci Rev Lett. 2012;1(1):30–4.

Sailaja V, Madhu M, Neeraja V. Quantitative phytochemical analysis of some medicinal plant seed by using various organic solvents. J Pharmacogn Phytochem. 2016;5(2):30–4.

Raghuvanshi D, Kumar S, Shukla MK, Kumar D, Kumar D, Verma R, Nepovimova E, Valko M, Alomar SY, Alwasel SH, Kuca K. Assessment of phytochemicals, antioxidants and in-silico molecular dynamic simulation of plant derived potential inhibitory activity of Thalictrum foliolosum DC. And Cordia dichotoma G. Forst. Against jaundice. Biomed Pharmacother. 2022;156:113898. 10.1016/j.biopha.2022.113898. 10.1016/j.biopha.2022.113898 PubMed DOI

Cetin N, Saglam C. Rapid detection of total phenolics, antioxidant activity and ascorbic acid of dried apples by chemometric algorithms. Food Biosci. 2022;47:101670. 10.1016/j.fbio.2022.101670.10.1016/j.fbio.2022.101670 DOI

Malada PM, Mogashoa MM, Masoko P. The evaluation of cytotoxic effects, antimicrobial activity, antioxidant activity and combination effect of Viscum rotundifolium and mystroxylon aethiopicum. S Afr J Bot. 2022;147:790–8. 10.1016/j.sajb.2022.03.025.10.1016/j.sajb.2022.03.025 DOI

Makkar HP, Siddhuraju P, Becker K. Plant secondary metabolites. Totowa, NJ, USA:: Humana Press; 2007;2007 Jan 1. PubMed

Dhalaria R, Verma R, Kumar D, Upadhyay NK, Alomar S, Kuca K. Impact assessment of beneficial mycorrhizal fungi on phytochemical constituents and nutrient uptake in Gomphrena globosa. Sci Hortic. 2024;325:112646. 10.1016/j.scienta.2023.112646.10.1016/j.scienta.2023.112646 DOI

Prashar Y, Patel NJ. HighPerformance ThinLayer Chromatography analysis of gallic acid and other phytoconstituents of Methanolic Extracts of Myrica nagi Fruit. Pharmacogn Res. 2020;12(2). 10.4103/pr.pr_104_19.

Jamkhande PG, Suryawanshi VA, Kaylankar TM, Patwekar SL. Biological activities of leaves of ethnomedicinal plant, Borassus flabellifer Linn.(Palmyra palm): an antibacterial, antifungal and antioxidant evaluation. Bull Fac Pharm Cairo Univ. 2016;54(1):59–66. 10.1016/j.bfopcu.2016.01.002.10.1016/j.bfopcu.2016.01.002 DOI

Irshad M, Zafaryab M, Singh M, Rizvi M. Comparative analysis of the antioxidant activity of Cassia fistula extracts. Int J Med Chem. 2012;2012:1–6. 10.1155/2012/157125.10.1155/2012/157125 PubMed DOI PMC

Al-Badi RS, Karunasinghe TG, Al-Sadi AM, Al-Mahmooli IH, Velazhahan R. Antagonistic activity of endophytic Fungi isolated from Shirazi Thyme (Boiss.) Against. Pol J Microbiol. 2020;69(3):379–83.10.33073/pjm-2020-029 PubMed DOI PMC

Kumari S, Khanna V, Sharma N. Characterization and biological evaluation of phenazine produced by antagonistic pseudomonads against Fusarium oxysporum f. sp. ciceris. Int J Pest Manag. 2022;30:1–4. 10.1080/09670874.2022.2084176.10.1080/09670874.2022.2084176 DOI

Syamsia Idhan A, Noerfitryani, Nadir M, Reta, Kadir M. Paddy chlorophyll concentrations in drought stress condition and endophytic fungi application. InIOP conference series: earth and environmental science. 2018;156:012040. 10.1088/1755-1315/156/1/012040

Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ. Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces Formosus LHL10. BMC Microbiol. 2012;12:1–4. 10.1186/1471-2180-12-3. 10.1186/1471-2180-12-3 PubMed DOI PMC

Molina-Montenegro MA, Escobedo VM, Atala C. Inoculation with extreme endophytes improves performance and nutritional quality in crop species grown under exoplanetary conditions. Front Plant Sci. 2023;14:1139704. 10.3389/fpls.2023.1139704. 10.3389/fpls.2023.1139704 PubMed DOI PMC

García-Latorre C, Rodrigo S, Santamaria O. Effect of fungal endophytes on plant growth and nutrient uptake in Trifolium subterraneum and Poa pratensis as affected by plant host specificity. Mycol Prog. 2021;20(9):1217–31. 10.1007/s11557-021-01732-6.10.1007/s11557-021-01732-6 DOI

Santamaria O, Lledó S, Rodrigo S, Poblaciones MJ. Effect of fungal endophytes on biomass yield, nutritive value and accumulation of minerals in Ornithopus compressus. Microb Ecol. 2017;74:841–52. 10.1007/s00248-017-1001-3. 10.1007/s00248-017-1001-3 PubMed DOI

Forouzi A, Ghasemnezhad A, Nasrabad RG. Phytochemical response of Stevia plant to growth promoting microorganisms under salinity stress. S Afr J Bot. 2020;134:109–18. 10.1016/j.sajb.2020.04.001.10.1016/j.sajb.2020.04.001 DOI

Ismail AH, Mehmood AS, Qadir MU, Husna AI, Hamayun MU, Khan NA. Thermal stress alleviating potential of endophytic fungus rhizopus oryzae inoculated to sunflower (Helianthus annuus L.) and soybean (Glycine max L). Pak J Bot. 2020;52(5):1857–65. 10.30848/PJB2020-5(10).10.30848/PJB2020-5(10) DOI

Gateta T, Nacoon S, Seemakram W, Ekprasert J, Theerakulpisut P, Sanitchon J, Suwannarach N, Boonlue S. The potential of endophytic Fungi for enhancing the growth and Accumulation of Phenolic compounds and anthocyanin in Maled Phai Rice (Oryza sativa L). J Fungi. 2023;9(9):937. 10.3390/jof9090937.10.3390/jof9090937 PubMed DOI PMC

Belakhdar G, Benjouad A, Abdennebi EH. Determination of some bioactive chemical constituents from Thesium Humile Vahl. J Mater Environ Sci. 2015;6(10):2778–83.

Chen J, Guo L, Yang G, Yang A, Zheng Y, Wang L. Metabolomic profiling of developing perilla leaves reveals the best harvest time. Front Plant Sci. 2022;13:989755. 10.3389/fpls.2022.989755. 10.3389/fpls.2022.989755 PubMed DOI PMC

Ghimire BK, Yoo JH, Yu CY, Chung IM. GC–MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: morphological and seasonal variability. Asian Pac J Trop Biomed. 2017;10(7):643–51. 10.1016/j.apjtm.2017.07.004.10.1016/j.apjtm.2017.07.004 PubMed DOI

Liu J, Wan Y, Zhao Z, Chen H. Determination of the content of rosmarinic acid by HPLC and analytical comparison of volatile constituents by GC-MS in different parts of Perilla frutescens (L.) Britt. Chem Cent J. 2013;7(1):1–1. 10.1186/1752-153X-7-61. 10.1186/1752-153X-7-61 PubMed DOI PMC

Khorasani FM, Ganjeali A, Asili J, Cheniany M. Beneficial effects of endophytic fungi inoculation on tanshinones and phenolic compounds of Salvia abrotanoides. Iran J Basic Med Sci. 2023;26(4):408. 10.22038/IJBMS.2023.67730.14828. 10.22038/IJBMS.2023.67730.14828 PubMed DOI PMC

Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol. 2013;53(12):1016–24. 10.1002/jobm.201200367. 10.1002/jobm.201200367 PubMed DOI

Sinno M, Ranesi M, Gioia L, d’Errico G, Woo SL. Endophytic fungi of tomato and their potential applications for crop improvement. Agriculture. 2020;10(12):587. 10.3390/agriculture10120587.10.3390/agriculture10120587 DOI

Omomowo IO, Amao JA, Abubakar A, Ogundola AF, Ezediuno LO, Bamigboye CO. A review on the trends of endophytic fungi bioactivities. Sci Afr. 2023;20:e01594. 10.1016/j.sciaf.2023.e01594.10.1016/j.sciaf.2023.e01594 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...