Uncovering the genomic basis of symbiotic interactions and niche adaptations in freshwater picocyanobacteria
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20‑12496X
Grantová Agentura Ceské Republiky (GAČR)
20‑12496X
Grantová Agentura Ceské Republiky (GAČR)
23-05081S
Grantová Agentura Ceské Republiky (GAČR)
19-23261S
Grantová Agentura Ceské Republiky (GAČR)
20‑12496X
Grantová Agentura Ceské Republiky (GAČR)
19-23261S
Grantová Agentura Ceské Republiky (GAČR)
19-23261S
Grantová Agentura Ceské Republiky (GAČR)
PubMed
39127705
PubMed Central
PMC11316352
DOI
10.1186/s40168-024-01867-0
PII: 10.1186/s40168-024-01867-0
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas, Freshwater, Genome collection, Picocyanobacteria, Symbiotic interaction,
- MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- fyziologická adaptace genetika MeSH
- genom bakteriální * MeSH
- genomika MeSH
- přenos genů horizontální MeSH
- sinice * genetika klasifikace MeSH
- sladká voda * mikrobiologie MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Picocyanobacteria from the genera Prochlorococcus, Synechococcus, and Cyanobium are the most widespread photosynthetic organisms in aquatic ecosystems. However, their freshwater populations remain poorly explored, due to uneven and insufficient sampling across diverse inland waterbodies. RESULTS: In this study, we present 170 high-quality genomes of freshwater picocyanobacteria from non-axenic cultures collected across Central Europe. In addition, we recovered 33 genomes of their potential symbiotic partners affiliated with four genera, Pseudomonas, Mesorhizobium, Acidovorax, and Hydrogenophaga. The genomic basis of symbiotic interactions involved heterotrophs benefiting from picocyanobacteria-derived nutrients while providing detoxification of ROS. The global abundance patterns of picocyanobacteria revealed ecologically significant ecotypes, associated with trophic status, temperature, and pH as key environmental factors. The adaptation of picocyanobacteria in (hyper-)eutrophic waterbodies could be attributed to their colonial lifestyles and CRISPR-Cas systems. The prevailing CRISPR-Cas subtypes in picocyanobacteria were I-G and I-E, which appear to have been acquired through horizontal gene transfer from other bacterial phyla. CONCLUSIONS: Our findings provide novel insights into the population diversity, ecology, and evolutionary strategies of the most widespread photoautotrophs within freshwater ecosystems. Video Abstract.
Zobrazit více v PubMed
Callieri C, Cronberg G, Stockner JG. Freshwater picocyanobacteria: single cells, microcolonies and colonial forms. In: In Ecology of Cyanobacteria II: Their diversity in space and time. Springer Netherlands: Dordrecht; 2012. p. 229–69.
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev. 2009;73(2):249–99. 10.1128/MMBR.00035-08 PubMed DOI PMC
Callieri C, Cabello-Yeves PJ, Bertoni F. The, “dark side” of picocyanobacteria: life as we do not know it (yet). Microorganisms. 2022;10(3):1–18.10.3390/microorganisms10030546 PubMed DOI PMC
Doré H, Farrant GK, Guyet U, Haguait J, Humily F, Ratin M, et al. Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria. Front Microbiol. 2020;11:1–23. 10.3389/fmicb.2020.567431 PubMed DOI PMC
Cabello-Yeves PJ, Callieri C, Picazo A, Schallenberg L, Hulber P, Roda-Garcia JJ, et al. Elucidating the picocyanobacteria salinity divide through ecogenomics of new freshwater isolates. BMC Biol. 2022;20:(1):175. PubMed PMC
Cabello-Yeves PJ, Picazo A, Camacho A, Callieri C, Rosselli R, Roda-Garcia JJ, et al. Ecological and genomic features of two widespread freshwater picocyanobacteria. Environ Microbiol. 2018;20(10):3757–71. 10.1111/1462-2920.14377 PubMed DOI
Six C, Thomas JC, Garczarek L, Ostrowski M, Dufresne A, Blot N, et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: A comparative genomics study. Genome Biol. 2007;8(12):R259. PubMed PMC
Rusch DB, Martiny AC, Dupont CL, Halpern AL, Venter JC. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc Natl Acad Sci U S A. 2010;107(37):16184–9. 10.1073/pnas.1009513107 PubMed DOI PMC
West NJ, Lebaron P, Strutton PG, Suzuki MT. A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean. ISME J. 2011;5(6):933–44. 10.1038/ismej.2010.186 PubMed DOI PMC
Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE, Thompson A, et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 2013;7(1):184–98. 10.1038/ismej.2012.89 PubMed DOI PMC
Callieri C, Slabakova V, Dzhembekova N, Slabakova N, Peneva E, Cabello-Yeves PJ, et al. The mesopelagic anoxic Black Sea as an unexpected habitat for Synechococcus challenges our understanding of global “deep red fluorescence.” ISME J. 2019;13(7):1676–87. 10.1038/s41396-019-0378-z PubMed DOI PMC
Callieri C. Synechococcus plasticity under environmental changes. FEMS Microbiol Lett. 2017;364(23):1–8.10.1093/femsle/fnx229 PubMed DOI
Cabello-Yeves PJ, Scanlan DJ, Callieri C, Picazo A, Schallenberg L, Hulber P, et al. α -cyanobacteria possessing form IA RuBisCO globally dominate aquatic habitats. ISME J. 2022;16:2421–32. 10.1038/s41396-022-01282-z PubMed DOI PMC
Callieri C, Mandolini E, Bertoni R, Lauceri R, Picazo A, Camacho A, et al. Atlas of picocyanobacteria monoclonal strains from the collection of CNR-IRSA, Italy. J Limnol. 2021;80(1):10–4081.
Berdjeb L, Pollet T, Domaizon I, Jacquet S. Effect of grazers and viruses on bacterial community structure and production in two contrasting trophic lakes. BMC Microbiol. 2011;11:1–18. 10.1186/1471-2180-11-88 PubMed DOI PMC
Huber P, Diovisalvi N, Ferraro M, Metz S, Lagomarsino L, Llames ME, et al. Phenotypic plasticity in freshwater picocyanobacteria. Environ Microbiol. 2017;19(3):1120–33. 10.1111/1462-2920.13638 PubMed DOI
Hahn MW, Höfle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol. 2001;35(2):113–21. 10.1111/j.1574-6941.2001.tb00794.x PubMed DOI
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18(2):67–83. 10.1038/s41579-019-0299-x PubMed DOI PMC
Cai F, Axen SD, Kerfeld CA. Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria. RNA Biol. 2013;10(5):687–93. 10.4161/rna.24571 PubMed DOI PMC
Berg KA, Lyra C, Sivonen K, Paulin L, Suomalainen S, Tuomi P, et al. High diversity of cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J. 2009;3(3):314–25. 10.1038/ismej.2008.110 PubMed DOI
Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol. 2008;74(14):4530–4. 10.1128/AEM.02479-07 PubMed DOI PMC
Christie-Oleza JA, Sousoni D, Lloyd M, Armengaud J, Scanlan DJ. Nutrient recycling facilitates long-term stability of marine microbial phototroph-heterotroph interactions. Nat Microbio. 2017;2:17100.10.1038/nmicrobiol.2017.100 PubMed DOI PMC
Callieri C, Amalfitano S, Corno G, Di Cesare A, Bertoni R, Eckert EM. The microbiome associated with two Synechococcus ribotypes at different levels of ecological interaction. J Phycol. 2017;53(6):1151–8. 10.1111/jpy.12583 PubMed DOI
Nair S, Zhang Z, Li H, Zhao H, Shen H, Kao SJ, et al. Inherent tendency of Synechococcus and heterotrophic bacteria for mutualism on long-term coexistence despite environmental interference. Sci Adv. 2022;8(39):1–16.10.1126/sciadv.abf4792 PubMed DOI PMC
Zheng Q, Wang Y, Lu J, Lin W, Chen F, Jiao N. Metagenomic and metaproteomic insights into photoautotrophic and heterotrophic interactions in a Synechococcus culture. MBio. 2020;11:e03261-e3319. 10.1128/mBio.03261-19 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. 10.1093/molbev/mst010 PubMed DOI PMC
Sekar R, Pernthaler A, Pernthaler J, Warnecke F, Posch T, Amann R. An improved protocol for quantification of freshwater actinobacteria by fluorescence in situ hybridization. Society. 2003;69(5):2928–35. PubMed PMC
Pernthaler J, Amann R. Fate of Heterotrophic Microbes in Pelagic Habitats: Focus on Populations. Microbiol Mol Biol Rev. 2005;69(3):440–61. 10.1128/MMBR.69.3.440-461.2005 PubMed DOI PMC
Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v.10: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102(2016):3–11. 10.1016/j.ymeth.2016.02.020 PubMed DOI
Wu YW, Simmons BA, Singer SW. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32(4):605–7. 10.1093/bioinformatics/btv638 PubMed DOI
Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;2015(8):1–15. PubMed PMC
Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;2019(7):1–13. PubMed PMC
Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3(7):836–43. 10.1038/s41564-018-0171-1 PubMed DOI PMC
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. 10.1186/1471-2105-11-119 PubMed DOI PMC
Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35(11):1026–8. 10.1038/nbt.3988 PubMed DOI
Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38(9):1079–86. 10.1038/s41587-020-0501-8 PubMed DOI
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043–55. 10.1101/gr.186072.114 PubMed DOI PMC
Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020;36(6):1925–7.10.1093/bioinformatics/btz848 PubMed DOI PMC
Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428(4):726–31. 10.1016/j.jmb.2015.11.006 PubMed DOI
Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37. PubMed PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. 10.1093/bioinformatics/btp348 PubMed DOI PMC
Hoang DT, Chernomor O, Von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–22. 10.1093/molbev/msx281 PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, et al. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020;37(5):1530–4. 10.1093/molbev/msaa015 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. 10.1038/nmeth.4285 PubMed DOI PMC
Garner RE, Kraemer SA, Onana VE, Fradette M, Varin M, Huot Y, et al. A genome catalogue of lake bacterial diversity and its drivers at continental scale. Nat Microbiol Resour. 2023;8:1920–34.10.1038/s41564-023-01435-6 PubMed DOI
Foster ZSL, Sharpton TJ, Grünwald NJ. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput Biol. 2017;13(2):1–15.10.1371/journal.pcbi.1005404 PubMed DOI PMC
Garczarek L, Guyet U, Doré H, Farrant GK, Hoebeke M, Brillet-Guéguen L, et al. Cyanorak v2.1: A scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Res. 2021;49(D1):D667-76. 10.1093/nar/gkaa958 PubMed DOI PMC
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol. 2022;25:606–41. 10.1111/1462-2920.16313 PubMed DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2016.
Di Cesare A, Cabello-Yeves PJ, Chrismas NAM, Sánchez-Baracaldo P, Salcher MM, Callieri C. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genomics. 2018;19(1):1–12. 10.1186/s12864-018-4648-3 PubMed DOI PMC
Salazar VW, Tschoeke DA, Swings J, Cosenza CA, Mattoso M, Thompson CC, et al. A new genomic taxonomy system for the Synechococcus collective. Environ Microbiol. 2020;22(11):4557–70. 10.1111/1462-2920.15173 PubMed DOI
Biller SJ, Coe A, Chisholm SW. Torn apart and reunited: Impact of a heterotroph on the transcriptome of Prochlorococcus. ISME J. 2016;10(12):2831–43. 10.1038/ismej.2016.82 PubMed DOI PMC
Wang Y, Branicky R, Noë A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915–28. 10.1083/jcb.201708007 PubMed DOI PMC
Kandror O, DeLeon A, Goldberg AL. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A. 2002;99(15):9727–32. 10.1073/pnas.142314099 PubMed DOI PMC
Samios S, Lekkas T, Nikolaou A, Golfinopoulos S. Structural investigations of aquatic humic substances from different watersheds. Desalination. 2007;210(1–3):125–37.10.1016/j.desal.2006.05.038 DOI
Koonin EV, Makarova KS. Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biol. 2022;20(1):1–19.10.1371/journal.pbio.3001481 PubMed DOI PMC
Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467–77. 10.1038/nrmicro2577 PubMed DOI PMC
Yang T, Lee CS, Cho JY, Bae MJ, Kim EJ. Comparison of bacterial assemblages associated with harmful cyanobacteria under different light conditions. Microorganisms. 2022;10(11):1–15.10.3390/microorganisms10112150 PubMed DOI PMC
Jung J, Seo YL, Kim KR, Park HY, Jeon CO. Mesorhizobium microcysteis sp. Nov., isolated from a culture of microcystis aeruginosa. Int J Syst Evol Microbiol. 2021;71(7):004847. PubMed
Kazamia E, Helliwell KE, Purton S, Smith AG. How mutualisms arise in phytoplankton communities: building eco-evolutionary principles for aquatic microbes. Ecol Lett. 2016;19(7):810–22. 10.1111/ele.12615 PubMed DOI PMC
Aguilo-Ferretjans MD, Bosch R, Puxty RJ, Latva M, Zadjelovic V, Chhun A, et al. Pili allow dominant marine cyanobacteria to avoid sinking and evade predation. Nat Commun. 2021;12(1):1–10. 10.1038/s41467-021-22152-w PubMed DOI PMC
Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol. 2004;70(5):2941–51. 10.1128/AEM.70.5.2941-2951.2004 PubMed DOI PMC
Meaden S, Biswas A, Arkhipova K, Morales SE, Dutilh BE, Westra ER, et al. High viral abundance and low diversity are associated with increased CRISPR-Cas prevalence across microbial ecosystems. Curr Biol. 2022;32(1):220-227.e5. 10.1016/j.cub.2021.10.038 PubMed DOI PMC