A study on microstructural, mechanical properties, and optimization of wear behaviour of friction stir processed AZ31/TiC composites using response surface methodology

. 2024 Aug 12 ; 14 (1) : 18729. [epub] 20240812

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39134620

Grantová podpora
SP2024/087 Ministry of Education Youth and Sport of Czech Republic and VSB-TUO

Odkazy

PubMed 39134620
PubMed Central PMC11319588
DOI 10.1038/s41598-024-69348-w
PII: 10.1038/s41598-024-69348-w
Knihovny.cz E-zdroje

The primary objective of this study is to investigate the microstructural, mechanical, and wear behaviour of AZ31/TiC surface composites fabricated through friction stir processing (FSP). TiC particles are reinforced onto the surface of AZ31 magnesium alloy to enhance its mechanical properties for demanding industrial applications. The FSP technique is employed to achieve a uniform dispersion of TiC particles and grain refinement in the surface composite. Microstructural characterization, mechanical testing (hardness and tensile strength), and wear behaviour evaluation under different operating conditions are performed. Response surface methodology (RSM) is utilized to optimize the wear rate by considering the effects of process parameters. The results reveal a significant improvement in hardness (41.3%) and tensile strength (39.1%) of the FSP-TiC composite compared to the base alloy, attributed to the refined grain structure (6-10 μm) and uniform distribution of TiC particles. The proposed regression model accurately predicts the wear rate, with a confirmation test validating an error percentage within ± 4%. Worn surface analysis elucidates the wear mechanisms, such as shallow grooves, delamination, and oxide layer formation, influenced by the applied load, sliding distance, and sliding velocity. The enhanced mechanical properties and wear resistance are attributed to the synergistic effects of grain refinement, particle-accelerated nucleation, the barrier effect of TiC particles, and improved interfacial bonding achieved through FSP. The optimized FSP-TiC composites exhibit potential for applications in industries demanding high strength, hardness, and wear resistance.

Erratum v

PubMed

Zobrazit více v PubMed

Bharathi, B. M., Vignesh, R. V., Padmanaban, R. & Govindaraju, M. Effect of friction stir processing and heat treatment on the corrosion properties of AZ31 alloy. Aust. J. Mech. Eng.20(9), 1479–1488 (2022).

Muralimanokar, M., VairaVignesh, R., Govindaraju, M. & Padmanaban, R. Characterization of AZ31-NbC surface composite fabricated by friction stir processing. KorozeaOchranaMateriálů64(1), 29–37 (2020).

Mordike, B. L. & Ebert, T. Magnesium: properties — applications — potential. Mater. Sci. Eng., A302(1), 37–45 (2001).

Yang, S. et al. Proportional optimization model of multiscale spherical BN for enhancing thermal conductivity. ACS Appl. Electron. Mater.4(8), 4659–4667 (2022).

Zhang, H. et al. Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0Ag-0.5Cu composite solders. Intermetallics150, 107683 (2022).

Li, M. et al. Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting. J. Market. Res.21, 4138–4150 (2022).

Li, Y. T. et al. Hard yet tough and self-lubricating (CuNiTiNbCr)Cx high-entropy nanocomposite films: Effects of carbon content on structure and properties. J. Mater. Sci. Technol.173, 20–30 (2024).

Singh, A. & Bala, N. Synthesis and comparative sliding wear behavior of stir cast Mg and Mg/Al2O3 metal matrix composites. Mater. Res. Expr.6(7), 076512 (2019).

Nourbakhsh, S. H., Shahrokhian, M. A., Hasanzadeh, M. & Atrian, A. Investigation of mechanical and microstructural properties of AZ31/SiC nanocomposite fabricated by squeeze stir casting. Mater. Res. Expr.5(8), 086514 (2018).

Zhou, C. et al. Hysteresis dynamic model of metal rubber based on higher-order nonlinear friction (HNF). Mech. Syst. Signal Process.189, 110117 (2023).

Guo, H. & Zhang, J. Expansion of sandwich tubes with metal foam core under axial compression. J. Appl. Mech.90(5), 051008 (2023).

Yang, K. et al. The critical role of corrugated lamellae morphology on the tough mechanical performance of natural Synceruscaffer horn sheath. Crystals13(3), 101576 (2023).

Yang, K. et al. Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths. J. Mater. Res. Technol.21, 2191–2202 (2022).

Zhang, M. et al. AZ31/GNP magnesium composites with excellent comprehensive mechanical properties prepared by friction stir processing and rolling. J. Mater. Res. Technol.25, 3078–3092 (2023).

Tomar, V., Kumar, B., Singh, T., Tyagi, P. & Kumar, A. Investigation of mechanical and tribological behaviors of MMC fabricated through FSP. IJERA2(1), 1–15 (2023).

Hu, L. H. et al. Effect of FS-SMAT on microstructure and mechanical property of pure magnesium and AZ31 magnesium alloy. Heat Treat. Surf. Eng.5(1), 2171768 (2023).

Chen, Y. et al. Study on microstructure and mechanical properties of TC4/AZ31 magnesium matrix nanocomposites. Materials16(3), 1139 (2023). PubMed PMC

Hu, K. et al. Effect on microstructure and properties of LA103Z Mg–Li alloy plate by multi-pass friction stir processing. J. Mater. Res. Technol.20, 3985–3994 (2022).

Hu, J. et al. Ultra-long life fatigue behavior of a high-entropy alloy. Int. J. Fatigue178, 108013 (2024).

Gajević S., Miladinović S., Stojanović B., Chapter 8 - Metallic nanocomposites: An Introduction, Nanotechnology in the Automotive Industry, Micro and Nano Technologies, 155-161. 10.1016/B978-0-323-90524-4.00008-6 (2022).

Yang, C. et al. Atomic insights into the deformation mechanism of an amorphous wrapped nano lamellar heterostructure and its effect on self-lubrication. Journal of Materials Research and Technology26, 4206–4218 (2023).

Bulei, C., Stojanovic, B. & Utu, D. Developments of discontinuously reinforced aluminium matrix composites: Solving the needs for the matrix. IOP Conf. Series: Mater. Sci. Eng.2212(1), 012029 (2022).

Kalita, K., Kumar, V. & Chakraborty, S. A novel MOALO-MODA ensemble approach for multi-objective optimization of machining parameters for metal matrix composites. Multisc. Multidiscipl. Model., Exper. Design6(2), 179–197 (2023).

Kalita, K., Shivakoti, I. & Ghadai, R. K. Optimizing process parameters for laser beam micro-marking using genetic algorithm and particle swarm optimization. Mater. Manuf. Process.32(9), 1101–1108 (2017).

Seenivasan, S., Soorya Prakash, K., Nandhakumar, S. & Gopal, P. M. Influence of AlCoCrCuFe High Entropy Alloy particles on the microstructural, mechanical and tribological properties of copper surface composite made through friction stir processing. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.235, 5555–5566 (2021).

Yang, X. et al. Surface modification of aluminum alloy by incorporation of AlCoCrFeNi high entropy alloy particles via underwater friction stir processing. Surf. Coat. Technol.385, 125438. 10.1016/J.SURFCOAT.2020.125438 (2020).

Thankachan, T. & Prakash, K. S. Microstructural, mechanical and tribological behavior of aluminum nitride reinforced copper surface composites fabricated through friction stir processing route. Mater. Sci. Eng.: A.688, 301–308. 10.1016/J.MSEA.2017.02.010 (2017).

Barmouz, M., Asadi, P., BesharatiGivi, M. K. & Taherishargh, M. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction. Mater. Sci. Eng.: A.528, 1740–1749. 10.1016/J.MSEA.2010.11.006 (2011).

Patel, V. V., Badheka, V. & Kumar, A. Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J. Mater. Process. Technol. C10.1016/J.JMATPROTEC.2016.09.009 (2017).

Han, J. et al. Microstructure and mechanical properties of friction stir welded 18Cr–2Mo ferritic stainless steel thick plate. Mater. Des.63, 238–246. 10.1016/J.MATDES.2014.05.070 (2014).

Li, J. et al. Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement. Mater. Sci. Eng.: A.792, 139755. 10.1016/J.MSEA.2020.139755 (2020).

McNelley, T. R., Swaminathan, S. & Su, J. Q. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr. Mater.58, 349–354. 10.1016/J.SCRIPTAMAT.2007.09.064 (2008).

Yang, X., Zhang, H., Dong, P., Yan, Z. & Wang, W. A study on the formation of multiple intermetallic compounds of friction stir processed high entropy alloy particles reinforced Al matrix composites. Mater. Charact.183, 111646. 10.1016/J.MATCHAR.2021.111646 (2022).

He, Z. F. et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures. Mater. Sci. Eng.: A.759, 437–447. 10.1016/J.MSEA.2019.05.057 (2019).

Komarasamy, M., Kumar, N., Tang, Z., Mishra, R. S. & Liaw, P. K. Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1CoCrFeNi high entropy alloy. Mater. Res. Lett.3, 30–34. 10.1080/21663831.2014.958586 (2015).

Yang, X. et al. Microstructural Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites. Surf. Topogr.8, 035012. 10.1088/2051672X/ABADE4 (2020).

Abubaker, H. M. et al. Influence of friction stir processing on wear, corrosion, and fracture toughness behavior of 2507 super duplex stainless steel. J. Mater. Eng. Perform.10.1007/s11665-020-05325-4 (2020).

Anandha, A. K., Gopi, S., Mohan, D. G. & ShashiKumar, S. Predicting the ultimate tensile strength and wear rate of aluminium hybrid surface composites fabricated via friction stir processing using computational methods. J. Adhes. Sci. Technol.36, 1707–1726. 10.1080/01694243.2021.1982237 (2021).

Chung, K. H. & Kim, D. E. Fundamental investigation of micro wear rate using an atomic force microscope. Tribol Lett.15, 135–144. 10.1023/A:1024457132574/METRICS (2003).

Radhika, N. & Sam, M. Friction stir processing: an emerging surface engineering technique tribological and wear performance of centrifuge cast functional graded copper based composite at dry sliding conditions. J Cent South Univ.26, 2961–2973. 10.1007/S11771-019-4228Y/METRICS (2019).

Radhika, N., Subramanian, R., Prasat, S. V. & Anandavel, B. Dry sliding wear behaviour of aluminium/alumina/graphite hybrid metal matrix composites. Ind. Lubr. Tribol.64, 359–366. 10.1108/00368791211262499/FULL/XML (2012).

Aldajah, S. H., Ajayi, O. O., Fenske, G. R. & David, S. Effect of friction stir processing on the tribological performance of high carbon steel. Wear267, 350–355. 10.1016/J.WEAR.2008.12.020 (2009).

Sekban, D. M., Aktarer, S. M., Yanar, H., Alsaran, A. & Purcek, G. Improvement the wear behavior of low carbon steels by friction stir processing. IOP Conf. Ser. Mater. Sci. Eng.174, 012058. 10.1088/1757-899X/174/1/012058 (2017).

Lashgari, H. R. & Zangeneh, S. Particle-stimulated nucleation (PSN) in the Co–28Cr–5Mo–0.3C Alloy. Metals10, 671. 10.3390/MET10050671 (2020).

Han, P. et al. Friction stir processing of cold-sprayed high-entropy alloy particles reinforced aluminum matrix composites: corrosion and wear properties. Metals Mater. Int.10.1007/s12540-022-01248-y (2022).

Ragunath, S., Radhika, N., Aravind Krishna, S. & Rajeshkumar, L. A study on microstructural, mechanical properties and optimization of wear behavior of friction stir processed AlCrCoFeNi High Entropy Alloy reinforced SS410 using response surface methodology. Heliyon10.1016/j.heliyon.2024.e24429 (2024). PubMed PMC

Satish Kumar, T., Shalini, S. & Thankachan, T. Friction stir processing basedsurface modification of AZ31 magnesium alloy. Mater. Manuf. Process.38(11), 1426–1435. 10.1080/10426914.2023.2165670 (2023).

Thandalam, S. K. & Thankachan, T. Multiobjective optimization of tribological parameters of al-insitu MgAl2O4 composites. Heliyon10(3), e25427. 10.1016/j.heliyon.2024.e25427 (2024). PubMed PMC

Rafi, S. M., Satish Kumar, T., Thankachan, T. & Selvan, C. P. Synergistic Effect of FSP and TiB2 on Mechanical and Tribological Behavior of AA2024 Surface Composites. J Tribol10.1115/1.4062517 (2023).

Govindaraju, M., Vignesh, R. V. & Padmanaban, R. Effect of heat treatment on the microstructure and mechanical properties of the friction stir processed AZ91D magnesium alloy. Met. Sci. Heat Treat.61, 311–317. 10.1007/s11041-019-00422-1 (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...