We are doing it wrong: Putting homology before phylogeny in cyanobacterial taxonomy

. 2024 Oct ; 60 (5) : 1071-1089. [epub] 20240817

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39152777

The rapid expansion of whole genome sequencing in bacterial taxonomy has revealed deep evolutionary relationships and speciation signals, but assembly methods often miss true nucleotide diversity in the ribosomal operons. Though it lacks sufficient phylogenetic signal at the species level, the 16S ribosomal RNA gene is still much used in bacterial taxonomy. In cyanobacterial taxonomy, comparisons of 16S-23S Internal Transcribed Spacer (ITS) regions are used to bridge this information gap. Although ITS rRNA region analyses are routinely being used to identify species, researchers often do not identify orthologous operons, which leads to improper comparisons. No method for delineating orthologous operon copies from paralogous ones has been established. A new method for recognizing orthologous ribosomal operons by quantifying the conserved paired nucleotides in a helical domain of the ITS, has been developed. The D1' Index quantifies differences in the ratio of pyrimidines to purines in paired nucleotide sequences of this helix. Comparing 111 operon sequences from 89 strains of Brasilonema, four orthologous operon types were identified. Plotting D1' Index values against the length of helices produced clear separation of orthologs. Most orthologous operons in this study were observed both with and without tRNA genes present. We hypothesize that genomic rearrangement, not gene duplication, is responsible for the variation among orthologs. This new method will allow cyanobacterial taxonomists to utilize ITS rRNA region data more correctly, preventing erroneous taxonomic hypotheses. Moreover, this work could assist genomicists in identifying and preserving evident sequence variability in ribosomal operons, which is an important proxy for evolution in prokaryotes.

Zobrazit více v PubMed

Asato, Y. (2003). Toward an understanding of cell growth and the cell division cycle of unicellular photoautotrophic cyanobacteria. Cellular and Molecular Life Sciences: CMLS, 60, 663–687.

Bohunická, M., Johansen, J. R., Villanueva, C. D., Mareš, J., Štenclová, L., Becerra‐Absalón, I., Hauer, T., & Kaštovský, J. (2024). Revision of the pantropical genus Brasilonema (Nostocales, Cyanobacteria), with the description of 24 species new to science. Fottea, 24(2), 137–184.

Boyer, S. L., Flechtner, V. R., & Johansen, J. R. (2001). Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular Biology and Evolution, 18(6), 1057–1069.

Bush, S. J., Foster, D., Eyre, D. W., Clark, E. L., De Maio, N., Shaw, L. P., Stoesser, N., Peto, T. E., Crook, D. W., & Walker, A. S. (2020). Genomic diversity affects the accuracy of bacterial single‐nucleotide polymorphism–calling pipelines. GigaScience, 9(2), giaa007.

Cai, F., Wang, Y., Yu, G., Wang, J., Peng, X., & Li, R. (2020). Proposal of Purpurea gen. nov. (Nostocales, Cyanobacteria), a novel cyanobacterial genus from wet soil samples in Tibet, China. Fottea, 20, 86–97.

Casamatta, D. A., Villanueva, C. D., Garvey, A. D., Stocks, H. S., Vaccarino, M., Dvořák, P., Hašler, P., & Johansen, J. R. (2020). Reptodigitus chapmanii (Nostocales, Hapalosiphonaceae) gen. nov.: A unique nostocalean (Cyanobacteria) genus based on a polyphasic approach. Journal of Phycology, 56(2), 425–436.

Chun, J., & Rainey, F. A. (2014). Integrating genomics into the taxonomy and systematics of the bacteria and archaea. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_2), 316–324.

Condon, C., Squires, C., & Squires, C. L. (1995). Control of rRNA transcription in Escherichia coli. Microbiological Reviews, 59(4), 623–645.

Conklin, K. Y., Stancheva, R., Otten, T. G., Fadness, R., Boyer, G. L., Read, B., Zhang, X., & Sheath, R. G. (2020). Molecular and morphological characterization of a novel dihydroanatoxin‐a producing Microcoleus species (Cyanobacteria) from the Russian River, California, USA. Harmful Algae, 93, 101767.

Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88.

Dvořák, P., Jahodářová, E., Stanojković, A., Skoupý, S., & Casamatta, D. A. (2023). Population genomics meets the taxonomy of cyanobacteria. Algal Research, 103128, 103128.

Dvořák, P., Poulíčková, A., Hašler, P., Belli, M., Casamatta, D. A., & Papini, A. (2015). Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation, 24, 739–757.

Engene, N., & Gerwick, W. H. (2011). Intra‐genomic 16S rRNA gene heterogeneity in cyanobacterial genomes. Fottea, 11(1), 17–24.

Erwin, P. M., & Thacker, R. W. (2008). Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Molecular Ecology, 17(12), 2937–2947.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–472.

González‐Resendiz, L., Johansen, J. R., León‐Tejera, H., Sánchez, L., Segal‐Kischinevzky, C., Escobar‐Sánchez, V., & Morales, M. (2019). A bridge too far in naming species: A total evidence approach does not support recognition of four species in Desertifilum (Cyanobacteria). Journal of Phycology, 55(4), 898–911.

Hirose, Y., Ohtsubo, Y., Misawa, N., Yonekawa, C., Nagao, N., Shimura, Y., Fujisawa, T., Kanesaki, Y., Katoh, H., Katayama, M., … Kawachi, M. (2021). Genome sequencing of the NIES cyanobacteria collection with a focus on the heterocyst‐forming clade. DNA Research, 28(6), dsab024.

Iteman, I., Rippka, R., Tandeau de Marsac, N., & Herdman, M. (2000). Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiologica, 146(6), 1275–1286.

Iteman, I., Rippka, R., Tandeau de Marsac, N., & Herdman, M. (2002). rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiologica, 148(2), 481–496.

Johansen, J. R., & Casamatta, D. A. (2005). Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algological Studies, 117(1), 71–93.

Johansen, J. R., Kovacik, L., Casamatta, D. A., Fučíková, K., & Kaštovský, J. (2011). Utility of 16S‐23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia, 92(3), 283–302.

Johansen, J. R., Mareš, J., Pietrasiak, N., Bohunická, M., Zima, J., Jr., Štenlová, L., & Hauer, T. (2017). Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria). PLoS ONE, 10, e0186393.

Jung, P., Azua‐Bustos, A., Gonzalez‐Silva, C., Mikhailyuk, T., Zabicki, D., Holzinger, A., Lakatos, M., & Büdel, B. (2021). Emendation of the coccoid cyanobacterial genus Gloeocapsopsis and description of the new species Gloeocapsopsis diffluens sp. nov. and Gloeocapsopsis dulcis sp. nov. isolated from the coastal range of the Atacama Desert (Chile). Frontiers in Microbiology, 12, 671742.

Kabirnataj, S., Nematzadeh, G. A., Talebi, A. F., Saraf, A., Suradkar, A., Tabatabaei, M., & Singh, P. (2020). Description of novel species of Aliinostoc, Desikacharya and Desmonostoc using a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology, 70(5), 3413–3426.

Kaneko, T., Matsubayashi, T., Sugita, M., & Sugiura, M. (1996). Physical and gene maps of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome. Plant Molecular Biology, 31, 193–201.

Kim, M., Oh, H. S., Park, S. C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_2), 346–351.

Klappenbach, J. A., Dunbar, J. M., & Schmidt, T. M. (2000). rRNA operon copy number reflects ecological strategies of bacteria. Applied and Environmental Microbiology, 66(4), 1328–1333.

Komárek, J., Kaštovský, J., Mareš, J., & Johansen, J. R. (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia, 86(4), 295–335.

Konstantinidis, K. T. (2023). Sequence‐discrete species for prokaryotes and other microbes: A historical perspective and pending issues. mLife, 2(4), 341–349.

Konstantinidis, K. T., & Tiedje, J. M. (2007). Prokaryotic taxonomy and phylogeny in the genomic era: Advancements and challenges ahead. Current Opinion in Microbiology, 10(5), 504–509.

Kurylo, C. M., Parks, M. M., Juette, M. F., Zinshteyn, B., Altman, R. B., Thibado, J. K., Vincent, C. T., & Blanchard, S. C. (2018). Endogenous rRNA sequence variation can regulate stress response gene expression and phenotype. Cell Reports, 25(1), 236–248.

Kyrpides, N. C., Hugenholtz, P., Eisen, J. A., Woyke, T., Göker, M., Parker, C. T., Amann, R., Beck, B. J., Chain, P. S., Chun, J., Colwell, R. R., … Klenk, H. P. (2014). Genomic encyclopedia of bacteria and archaea: Sequencing a myriad of type strains. PLoS Biology, 12(8), e1001920.

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.

Lee, I., Ouk Kim, Y., Park, S. C., & Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66(2), 1100–1103.

Maeda, T., Takada, N., Furushita, M., & Shiba, T. (2000). Structural variation in the 16S‐23S rRNA intergenic spacers of Vibrio parahaemolyticus. FEMS Microbiology Letters, 192(1), 73–77.

Mai, T., Johansen, J. R., Pietrasiak, N., Bohunická, M., & Martin, M. P. (2018). Revision of the Synechococcales (cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa, 365, 1–59.

Mareš, J. (2018). Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes and their relation to the current taxonomic system. Hydrobiologia, 811(1), 19–34.

Mareš, J., Johansen, J. R., Hauer, T., Zima, J., Jr., Ventura, S., Cuzman, O., Tiribilli, B., & Kaštovský, J. (2019). Taxonomic resolution of the genus Cyanothece (Chroococcales, Cyanobacteria), with a treatment on Gloeothece and three new genera, Crocosphaera, Rippkaea, and Zehria. Journal of Phycology, 55(3), 578–610.

Miller, M. A., Schwartz, T., Pickett, B. E., He, S., Klem, E. B., Scheuermann, R. H., Passarotti, S., Kaufman, S., & O'Leary, M. A. (2015). A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evolutionary Bioinformatics, 11, EBO‐S21501.

O'Rawe, J., Jiang, T., Sun, G., Wu, Y., Wang, W., Hu, J., Hu, J., Bodily, P., Tian, L., Hakonarson, H., … Lyon, G. J. (2013). Low concordance of multiple variant‐calling pipelines: Practical implications for exome and genome sequencing. Genome Medicine, 5(3), 1–18.

Osorio, C. R., Collins, M. D., Romalde, J. L., & Toranzo, A. E. (2005). Variation in 16S‐23S rRNA intergenic spacer regions in Photobacterium damselae: A mosaic‐like structure. Applied and Environmental Microbiology, 71(2), 636–645.

Osorio‐Santos, K., Pietrasiak, N., Bohunická, M., Miscoe, L. H., Kováčik, L., Martin, M. P., & Johansen, J. R. (2014). Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): Taxonomically recognizing cryptic diversification. European Journal of Phycology, 49(4), 450–470.

Perkerson, R. B., III, Johansen, J. R., Kovácik, L., Brand, J., Kaštovský, J., & Casamatta, D. A. (2011). A unique Pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular data. Journal of Phycology, 47, 1397–1412.

Pietrasiak, N., Osorio‐Santos, K., Shalygin, S., Martin, M. P., & Johansen, J. R. (2019). When is a lineage a species? A case study in Myxacorys gen. nov. (Synechococcales: Cyanobacteria) with the description of two new species from the Americas. Journal of Phycology, 55(5), 976–996.

Pietrasiak, N., Reeve, S., Osorio‐Santos, K., Lipson, D. A., & Johansen, J. R. (2021). Trichotorquatus gen. nov. ‐ a new genus of soil cyanobacteria discovered from American drylands. Journal of Phycology, 57(3), 886–902.

Řeháková, K., Johansen, J. R., Bowen, M. B., Martin, M. P., & Sheil, C. A. (2014). Variation in secondary structure of the 16S rRNA molecule in cyanobacteria with implications for phylogenetic analysis. Fottea, 14(2), 161–178.

Richter, M., & Rosselló‐Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences of the USA, 106(45), 19126–19131.

Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.

Schirrmeister, B. E., Dalquen, D. A., Anisimova, M., & Bagheri, H. C. (2012). Gene copy number variation and its significance in cyanobacterial phylogeny. BMC Microbiology, 12, 1–15.

Shang, J., Chen, M., Hou, S., Li, T., Yang, Y., Li, Q., Jiang, H., Dal, G., Zhang, Z., Hess, W. R., & Qiu, B. (2019). Genomic and transcriptomic insights into the survival of the subaerial cyanobacterium Nostoc flagelliforme in arid and exposed habitats. Environmental Microbiology, 21(2), 845–863.

Stackebrandt, E., & Ebers, J. (2006). Taxonomic parameters revisited: Tarnished gold standards. Microbial Today, 33, 152–155.

Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: A place for DNA‐DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, 44(4), 846–849.

Stamatakis, A. (2014). RAxML version 8, a tool for phylogenetic analysis and post‐analysis of large phylogenies. Bioinformatics, 30, 1312–1313.

Stanojković, A., Skoupý, S., Johannesson, H., & Dvořák, P. (2024). The global speciation continuum of the cyanobacterium Microcoleus. Nature Communications, 15(1), 2122.

Stecher, G., Tamura, K., & Kumar, S. (2020). Molecular evolutionary genetics analysis (MEGA) for macOS. Molecular Biology and Evolution, 37, 1237–1239.

Strunecký, O., Ivanova, A. P., & Mareš, J. (2023). An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. Journal of Phycology, 59(1), 12–51.

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022–3027.

Tang, J., Li, L., Li, M., Du, L., Shah, M. R., Waleron, M. M., Waleron, M., Waleron, K. F., & Daroch, M. (2021). Description, taxonomy, and comparative genomics of a novel species, Thermoleptolyngbya sichuanensis sp. nov., isolated from Hot Springs of Ganzi, Sichuan, China. Frontiers in Microbiology, 12, 696102.

Tian, R. M., Cai, L., Zhang, W. P., Cao, H. L., & Qian, P. Y. (2015). Rare events of intragenus and intraspecies horizontal transfer of the 16S rRNA gene. Genome Biology and Evolution, 7(8), 2310–2320.

Tourova, T. P. (2003). Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analyses. Microbiology, 72, 389–402.

van Belkum, A., Scherer, S., Van Alphen, L., & Verbrugh, H. (1998). Short‐sequence DNA repeats in prokaryotic genomes. Microbiology and Molecular Biology Reviews, 62(2), 275–293.

van Passel, M. W., Kuramae, E. E., Luyf, A. C., Bart, A., & Boekhout, T. (2006). The reach of the genome signature in prokaryotes. BMC Evolutionary Biology, 6, Article 84.

Vendeix, F. A. P., Munoz, A. M., & Agris, P. F. (2009). Free energy calculation of modified base‐pair formation in explicit solvent: A predictive model. RNA, 15(12), 2278–2287.

Větrovský, T., & Baldrian, P. (2013). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE, 8(2), e57923.

Viguera, E., Canceill, D., & Ehrlich, S. D. (2001). Replication slippage involves DNA polymerase pausing and dissociation. The EMBO Journal, 20(10), 2587–2595.

Villanueva, C. D., Garvey, A. D., Hašler, P., Dvořák, P., Poulíčková, A., Norwich, A. R., & Casamatta, D. A. (2019). Descriptions of Brasilonema geniculatum and Calothrix dumus (Nostocales, Cyanobacteria): Two new taxa isolated from cemetery tombstones. Phytotaxa, 387(1), 1–20.

Villanueva, C. D., Hašler, P., Dvořák, P., Poulíčková, A., & Casamatta, D. A. (2018). Brasilonema lichenoides sp. nov. and Chroococcidiopsis lichenoides sp. nov. (Cyanobacteria): Two novel cyanobacterial constituents isolated from a tripartite lichen of headstones. Journal of Phycology, 54(2), 224–233.

Walter, J. M., Coutinho, F. H., Dutilh, B. E., Swings, J., Thompson, F. L., & Thompson, C. C. (2017). Ecogenomics and taxonomy of cyanobacteria phylum. Frontiers in Microbiology, 8, 2132.

Wang, Y., Cai, F., Jia, N., & Li, R. (2019). Descriptions of a novel coccoid cyanobacterial genus and species Sinocapsa zengkensis gen. nov. sp. nov. (Sinocapsaceae, incertae sedis), with taxonomic notes on genera Chroococcidiopsidales. Phytotaxa, 409(3), 146–160.

Xu, D., & Côté, J. C. (2003). Phylogenetic relationships between bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S–23S ITS nucleotide sequences. International Journal of Systematic and Evolutionary Microbiology, 53(3), 695–704.

Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló‐Móra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews. Microbiology, 12(9), 635–645.

Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F., & Papke, R. T. (2006). Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events. Genome Research, 16(9), 1099–1108.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Revision and expansion of the genus Spirirestis (Tolypothrichaceae, Cyanobacteria)

. 2025 Aug ; 61 (4) : 966-988. [epub] 20250711

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...