The mutagenic forces shaping the genomes of lung cancer in never smokers
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40604281
DOI
10.1038/s41586-025-09219-0
PII: 10.1038/s41586-025-09219-0
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Lung cancer in never smokers (LCINS) accounts for around 25% of all lung cancers1,2 and has been associated with exposure to second-hand tobacco smoke and air pollution in observational studies3-5. Here we use data from the Sherlock-Lung study to evaluate mutagenic exposures in LCINS by examining the cancer genomes of 871 treatment-naive individuals with lung cancer who had never smoked, from 28 geographical locations. KRAS mutations were 3.8 times more common in adenocarcinomas of never smokers from North America and Europe than in those from East Asia, whereas a higher prevalence of EGFR and TP53 mutations was observed in adenocarcinomas of never smokers from East Asia. Signature SBS40a, with unknown cause6, contributed the largest proportion of single base substitutions in adenocarcinomas, and was enriched in cases with EGFR mutations. Signature SBS22a, which is associated with exposure to aristolochic acid7,8, was observed almost exclusively in patients from Taiwan. Exposure to secondhand smoke was not associated with individual driver mutations or mutational signatures. By contrast, patients from regions with high levels of air pollution were more likely to have TP53 mutations and shorter telomeres. They also exhibited an increase in most types of mutations, including a 3.9-fold increase in signature SBS4, which has previously been linked with tobacco smoking9, and a 76% increase in the clock-like10 signature SBS5. A positive dose-response effect was observed with air-pollution levels, correlating with both a decrease in telomere length and an increase in somatic mutations, mainly attributed to signatures SBS4 and SBS5. Our results elucidate the diversity of mutational processes shaping the genomic landscape of lung cancer in never smokers.
Ben May Department for Cancer Research University of Chicago Chicago IL USA
Biobanco IBSP CV FISABIO Valencia Spain
Cancer Evolution and Genome Instability Laboratory Francis Crick Institute London UK
Clinic of Pulmonology Clinical Center of Serbia Belgrade Serbia
Department of Bioengineering University of California San Diego La Jolla CA USA
Department of Cancer Epidemiology H Lee Moffitt Cancer Center and Research Institute Tampa FL USA
Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA
Department of Clinical Sciences and Community Health University of Milan Milan Italy
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Łódź Poland
Department of Environmental Health Harvard T H Chan School of Public Health Boston MA USA
Department of Human Genetics University of Chicago Chicago IL USA
Department of Mathematics Harvard University Cambridge MA USA
Department of Medicine Massachusetts General Hospital Boston MA USA
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA USA
Department of Pathology Brigham and Women's Hospital Boston MA USA
Department of Pathology Centre Hospitalier de l'Université de Montréal Montreal Quebec Canada
Department of Pathology University of Hong Kong Hong Kong China
Department of Pathology Yale School of Medicine New Haven CT USA
Digital Genomics Group Cancer Genomics Program Spanish National Cancer Research Center Madrid Spain
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD USA
Division of Pulmonary and Critical Care Medicine Mayo Clinic Rochester MN USA
Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan Italy
Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France
IHU RespirERA Biobank BB 0033 0025 Côte d'Azur University Nice France
Institute of Population Health Sciences National Health Research Institutes Zhunan Taiwan
International Organization for Cancer Prevention and Research Belgrade Serbia
Manchester Cancer Research Centre University of Manchester Manchester UK
Manchester NIHR Biomedical Research Centre Manchester UK
Moores Cancer Center University of California San Diego La Jolla CA USA
National Institute of Cancer Research National Health Research Institutes Zhunan Taiwan
Princess Margaret Cancer Center University of Toronto Toronto Ontario Canada
Queen Mary Hospital University of Hong Kong Hong Kong China
Red Valenciana de Biobancos FISABIO Valencia Spain
Sanford Stem Cell Institute University of California San Diego La Jolla CA USA
Thoracic Surgery Roswell Park Comprehensive Cancer Center Buffalo NY USA
University of Chicago Medicine Comprehensive Cancer Center University of Chicago Chicago IL USA
Zobrazit více v PubMed
Sun, S., Schiller, J. H. & Gazdar, A. F. Lung cancer in never smokers—a different disease. Nat. Rev. Cancer 7, 778–790 (2007). PubMed DOI
Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024). PubMed DOI
World Health Organization & International Agency for Research on Cancer. Tobacco Smoke and Involuntary Smoking: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 83 (WHO & IARC, 2004).
Turner, M. C. et al. Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA Cancer J. Clin. 70, 460–479 (2020). DOI
Ciabattini, M., Rizzello, E., Lucaroni, F., Palombi, L. & Boffetta, P. Systematic review and meta-analysis of recent high-quality studies on exposure to particulate matter and risk of lung cancer. Environ. Res. 196, 110440 (2021). PubMed DOI
Senkin, S. et al. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature 629, 910–918 (2024). PubMed DOI PMC
Poon, S. L. et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci. Transl. Med. 5, 197ra101 (2013). PubMed DOI
Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013). PubMed DOI PMC
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). PubMed DOI PMC
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015). PubMed DOI PMC
Proctor, R. N. Tobacco and the global lung cancer epidemic. Nat. Rev. Cancer 1, 82–86 (2001). PubMed DOI
Siegel, D. A., Fedewa, S. A., Henley, S. J., Pollack, L. A. & Jemal, A. Proportion of never smokers among men and women with lung cancer in 7 US states. JAMA Oncol. 7, 302–304 (2021). PubMed DOI
Lui, N. S. et al. Sub-solid lung adenocarcinoma in Asian versus Caucasian patients: different biology but similar outcomes. J. Thorac. Dis. 12, 2161–2171 (2020). PubMed DOI PMC
Gaughan, E. M., Cryer, S. K., Yeap, B. Y., Jackman, D. M. & Costa, D. B. Family history of lung cancer in never smokers with non-small-cell lung cancer and its association with tumors harboring EGFR mutations. Lung Cancer 79, 193–197 (2013). PubMed DOI
Toh, C. K. et al. Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J. Clin. Oncol. 24, 2245–2251 (2006). PubMed DOI
Yano, T. et al. Never-smoking nonsmall cell lung cancer as a separate entity: clinicopathologic features and survival. Cancer 113, 1012–1018 (2008). PubMed DOI
Brennan, P. et al. High cumulative risk of lung cancer death among smokers and nonsmokers in Central and Eastern Europe. Am. J. Epidemiol. 164, 1233–1241 (2006). PubMed DOI
Wang, P., Sun, S., Lam, S. & Lockwood, W. W. New insights into the biology and development of lung cancer in never smokers—implications for early detection and treatment. J. Transl. Med. 21, 585 (2023). PubMed DOI PMC
Koh, G., Degasperi, A., Zou, X., Momen, S. & Nik-Zainal, S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat. Rev. Cancer 21, 619–637 (2021). PubMed DOI
Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). PubMed DOI PMC
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). DOI
Wang, X. et al. Association between smoking history and tumor mutation burden in advanced non-small cell lung cancer. Cancer Res. 81, 2566–2573 (2021). PubMed DOI PMC
Lee, J. J. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857 (2019). PubMed DOI
Zhang, T. et al. Genomic and evolutionary classification of lung cancer in never smokers. Nat. Genet. 53, 1348–1359 (2021). PubMed DOI PMC
Landi, M. T. et al. Tracing lung cancer risk factors through mutational signatures in never-smokers: the Sherlock-Lung study. Am. J. Epidemiol. 190, 962–976 (2021). PubMed DOI
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). PubMed DOI
Islam, S. M. A. et al. Uncovering novel mutational signatures by de novo extraction with SigProfilerExtractor. Cell Genom. 2, 100179 (2022). PubMed DOI PMC
Sondka, Z. et al. COSMIC: a curated database of somatic variants and clinical data for cancer. Nucleic Acids Res. 52, D1210–D1217 (2024). PubMed DOI
Zou, X. et al. A systematic CRISPR screen defines mutational mechanisms underpinning signatures caused by replication errors and endogenous DNA damage. Nat. Cancer 2, 643–657 (2021). PubMed DOI PMC
Steele, C. D. et al. Signatures of copy number alterations in human cancer. Nature 606, 984–991 (2022). PubMed DOI PMC
Everall, A. et al. Comprehensive repertoire of the chromosomal alteration and mutational signatures across 16 cancer types from 10,983 cancer patients. Preprint at medRxiv https://doi.org/10.1101/2023.06.07.23290970 (2023).
Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016). PubMed DOI PMC
Degasperi, A. et al. A practical framework and online tool for mutational signature analyses show inter-tissue variation and driver dependencies. Nat. Cancer 1, 249–263 (2020). PubMed DOI PMC
Huang, K. L. et al. Pathogenic germline variants in 10,389 adult cancers. Cell 173, 355–370 (2018). PubMed DOI PMC
Nguyen, L., Martens, J. W. M., Van Hoeck, A. & Cuppen, E. Pan-cancer landscape of homologous recombination deficiency. Nat. Commun. 11, 5584 (2020). PubMed DOI PMC
Davies, H. et al. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23, 517–525 (2017). PubMed DOI PMC
Zhang, T. et al. Deciphering lung adenocarcinoma evolution and the role of LINE-1 retrotransposition. Preprint at bioRxiv https://doi.org/10.1101/2025.03.14.643063 (2025).
Letouze, E. et al. Mutational signatures reveal the dynamic interplay of risk factors and cellular processes during liver tumorigenesis. Nat. Commun. 8, 1315 (2017). PubMed DOI PMC
Fujimoto, A. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 48, 500–509 (2016). PubMed DOI
Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov. 5, 704–712 (2015). PubMed DOI PMC
Chen, Y.-J. et al. Proteogenomics of non-smoking lung cancer in East Asia delineates molecular signatures of pathogenesis and progression. Cell 182, 226–244 (2020). PubMed DOI
Zhang, T. et al. APOBEC affects tumor evolution and age at onset of lung cancer in smokers. Nat. Commun. 16, 4711 (2025). PubMed DOI PMC
Morton, L. M. et al. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science 372, eabg2538 (2021). PubMed DOI PMC
Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020). PubMed DOI
Degasperi, A. et al. Substitution mutational signatures in whole-genome-sequenced cancers in the UK population. Science 376, abl9283 (2022). DOI
Otlu, B. et al. Topography of mutational signatures in human cancer. Cell Rep. 42, 112930 (2023). PubMed DOI PMC
Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017). PubMed DOI
Zhang, T. et al. Distinct genomic landscape of lung adenocarcinoma from household use of smoky coal. Am. J. Respir. Crit. Care Med. 208, 733–736 (2023). PubMed DOI PMC
Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023). PubMed DOI PMC
van Donkelaar, A. et al. Monthly global estimates of fine particulate matter and their uncertainty. Environ. Sci. Technol. 55, 15287–15300 (2021). PubMed DOI
Mochizuki, A. et al. Passive smoking-induced mutagenesis as a promoter of lung carcinogenesis. J. Thorac. Oncol. 19, 984–994 (2024). PubMed DOI
Yu, X. J. et al. Characterization of somatic mutations in air pollution-related lung cancer. EBioMedicine 2, 583–590 (2015). PubMed DOI PMC
Chan, W.-H. et al. Verifying the accuracy of self-reported smoking behavior in female volunteer soldiers. Sci. Rep. 13, 3438 (2023). PubMed DOI PMC
Landi, M. T. et al. Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case–control study of lung cancer. BMC Public Health 8, 203 (2008). PubMed DOI PMC
Bergmann, E. A., Chen, B. J., Arora, K., Vacic, V. & Zody, M. C. Conpair: concordance and contamination estimator for matched tumor–normal pairs. Bioinformatics 32, 3196–3198 (2016). PubMed DOI PMC
Pedersen, B. S. et al. Somalier: rapid relatedness estimation for cancer and germline studies using efficient genome sketches. Genome Med. 12, 62 (2020). PubMed DOI PMC
Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012). PubMed DOI PMC
Boot, A. et al. In-depth characterization of the cisplatin mutational signature in human cell lines and in esophageal and liver tumors. Genome Res. 28, 654–665 (2018). PubMed DOI PMC
Dentro, S. C. et al. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 184, 2239–2254 (2021). PubMed DOI PMC
Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012). PubMed DOI PMC
Lee, J. K. et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065–3074 (2017). PubMed DOI
The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014). DOI PMC
Carrot-Zhang, J. et al. Whole-genome characterization of lung adenocarcinomas lacking the RTK/RAS/RAF pathway. Cell Rep. 34, 108707 (2021). PubMed DOI PMC
Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018). PubMed DOI
Sadedin, S. P. & Oshlack, A. Bazam: a rapid method for read extraction and realignment of high-throughput sequencing data. Genome Biol. 20, 78 (2019). PubMed DOI PMC
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013). PubMed DOI PMC
Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018). PubMed DOI
Freed, D., Pan, R. & Aldana, R. TNscope: accurate detection of somatic mutations with haplotype-based variant candidate detection and machine learning filtering. Preprint at bioRxiv https://doi.org/10.1101/250647 (2018).
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). PubMed DOI PMC
Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015). PubMed DOI
Hasan, M. S., Wu, X., Watson, L. T. & Zhang, L. UPS-indel: a universal positioning system for indels. Sci. Rep. 7, 14106 (2017). PubMed DOI PMC
Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C. & Koeffler, H. P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 28, 1747–1756 (2018). PubMed DOI PMC
Jun, G. et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. Am. J. Hum. Genet. 91, 839–848 (2012). PubMed DOI PMC
Martinez-Jimenez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020). PubMed DOI
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041 (2017). PubMed DOI PMC
Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18, 696–705 (2018). PubMed DOI PMC
Muiños, F., Martinez-Jimenez, F., Pich, O., Gonzalez-Perez, A. & Lopez-Bigas, N. In silico saturation mutagenesis of cancer genes. Nature 596, 428–432 (2021). PubMed DOI
Chakravarty, D. et al. OncoKB: a precision oncology knowledge base. JCO Precis. Oncol. 2017, 1–16 (2017). DOI
Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385 (2018). PubMed DOI PMC
Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023). PubMed DOI
Yuan, K., Macintyre, G., Liu, W., PCAWG-11 working group & Markowetz, F. Ccube: a fast and robust method for estimating cancer cell fractions. Preprint at bioRxiv https://doi.org/10.1101/484402 (2018).
Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011). PubMed DOI PMC
Yang, L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153, 919–929 (2013). PubMed DOI PMC
Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016). PubMed DOI
Yang, Y. & Yang, L. Somatic structural variation signatures in pediatric brain tumors. Cell Rep. 42, 113276 (2023). PubMed DOI PMC
Zhu, H. et al. Candidate cancer driver mutations in distal regulatory elements and long-range chromatin interaction networks. Mol. Cell 77, 1307–1321 (2020). PubMed DOI
Ding, Z. et al. Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 42, e75 (2014). PubMed DOI PMC
Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013). PubMed DOI PMC
Bergstrom, E. N. et al. SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 20, 685 (2019). PubMed DOI PMC
Díaz-Gay, M. et al. Assigning mutational signatures to individual samples and individual somatic mutations with SigProfilerAssignment. Bioinformatics 39, btad756 (2023). PubMed DOI PMC
Otlu, B. & Alexandrov, L. B. Evaluating topography of mutational signatures with SigProfilerTopography. Genome Biol. 26, 134 (2025). PubMed DOI PMC
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995). DOI