ANPHY-Sleep: an Open Sleep Database from Healthy Adults Using High-Density Scalp Electroencephalogram
Language English Country England, Great Britain Media electronic
Document type Dataset, Journal Article
PubMed
39154027
PubMed Central
PMC11330504
DOI
10.1038/s41597-024-03722-1
PII: 10.1038/s41597-024-03722-1
Knihovny.cz E-resources
- MeSH
- Databases, Factual MeSH
- Adult MeSH
- Electroencephalography * MeSH
- Humans MeSH
- Polysomnography * MeSH
- Scalp * MeSH
- Sleep * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
Well-documented sleep datasets from healthy adults are important for sleep pattern analysis and comparison with a wide range of neuropsychiatric disorders. Currently, available sleep datasets from healthy adults are acquired using low-density arrays with a minimum of four electrodes in a typical sleep montage. The low spatial resolution is thus prohibitive for the analysis of the spatial structure of sleep. Here we introduce an open-access sleep dataset from 29 healthy adults (13 female, aged 32.17 ± 6.30 years) acquired at the Montreal Neurological Institute. The dataset includes overnight polysomnograms with high-density scalp electroencephalograms incorporating 83 electrodes, electrocardiogram, electromyogram, electrooculogram, and an average of electrode positions using manual co-registrations and sleep scoring annotations. Data characteristics and group-level analysis of sleep properties were assessed. The database can be accessed through ( https://doi.org/10.17605/OSF.IO/R26FH ). This is the first high-density electroencephalogram open sleep database from healthy adults, allowing researchers to investigate sleep physiology at high spatial resolution. We expect that this database will serve as a valuable resource for studying sleep physiology and for benchmarking sleep pathology.
Analytical Neurophysiological Lab Department of Neurology Duke University Durham North Carolina USA
Department of Biomedical Engineering Duke University Durham North Carolina USA
International Clinical Research Centre St Anne's University Hospital Brno Brno Czech Republic
The Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic
See more in PubMed
Hirshkowitz, M. Normal human sleep: an overview. Medical Clinics of North America88, 551–565 (2004). 10.1016/j.mcna.2004.01.001 PubMed DOI
Lokhandwala, S. & Spencer, R. M. C. Relations between sleep patterns early in life and brain development: A review. Developmental Cognitive Neuroscience56, 101130 (2022). 10.1016/j.dcn.2022.101130 PubMed DOI PMC
Wang, G., Grone, B., Colas, D., Appelbaum, L. & Mourrain, P. Synaptic plasticity in sleep: learning, homeostasis and disease. Trends in Neurosciences34, 452–463 (2011). 10.1016/j.tins.2011.07.005 PubMed DOI PMC
Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science366, 628–631 (2019). 10.1126/science.aax5440 PubMed DOI PMC
Nobili, L. et al. Sleep and epilepsy: A snapshot of knowledge and future research lines. Journal of Sleep Research31, e13622 (2022). 10.1111/jsr.13622 PubMed DOI PMC
Baranwal, N., Yu, P. K. & Siegel, N. S. Sleep physiology, pathophysiology, and sleep hygiene. Prog Cardiovasc Dis77, 59–69 (2023). 10.1016/j.pcad.2023.02.005 PubMed DOI
Sateia, M. J. International Classification of Sleep Disorders-Third Edition. Chest146, 1387–1394 (2014). 10.1378/chest.14-0970 PubMed DOI
Janiukstyte, V. et al. Normative brain mapping using scalp EEG and potential clinical application. Sci Rep13, 13442 (2023). 10.1038/s41598-023-39700-7 PubMed DOI PMC
Frauscher, B. et al. Atlas of the normal intracranial electroencephalogram: neurophysiological awake activity in different cortical areas. Brain141, 1130–1144 (2018). 10.1093/brain/awy035 PubMed DOI
Djonlagic, I. et al. Macro and micro sleep architecture and cognitive performance in older adults. Nat Hum Behav5, 123–145 (2021). 10.1038/s41562-020-00964-y PubMed DOI PMC
Grandner, M. A. & Fernandez, F.-X. The translational neuroscience of sleep: A contextual framework. Science374, 568–573 (2021). 10.1126/science.abj8188 PubMed DOI PMC
Bernardi, G. et al. Regional Delta Waves In Human Rapid Eye Movement Sleep. J. Neurosci.39, 2686–2697 (2019). 10.1523/JNEUROSCI.2298-18.2019 PubMed DOI PMC
Markun, L. C. & Sampat, A. Clinician-Focused Overview and Developments in Polysomnography. Curr Sleep Med Rep6, 309–321 (2020). 10.1007/s40675-020-00197-5 PubMed DOI PMC
Campbell, I. G. EEG recording and analysis for sleep research. Curr Protoc NeurosciChapter 10, Unit10.2 (2009). PubMed PMC
Khalighi, S., Sousa, T., Santos, J. M. & Nunes, U. ISRUC-Sleep: A comprehensive public dataset for sleep researchers. Computer Methods and Programs in Biomedicine124, 180–192 (2016). 10.1016/j.cmpb.2015.10.013 PubMed DOI
Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A. C. & Oberye, J. J. L. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering47, 1185–1194 (2000). 10.1109/10.867928 PubMed DOI
Devuyst, S. The DREAMS Databases and Assessment Algorithm. Zenodo10.5281/zenodo.2650142 (2005).10.5281/zenodo.2650142 DOI
Terzano, M. G. et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Medicine2, 537–553 (2001). 10.1016/S1389-9457(01)00149-6 PubMed DOI
Mikkelsen, K. B., Villadsen, D. B., Otto, M. & Kidmose, P. Automatic sleep staging using ear-EEG. Biomed Eng Online16, 111 (2017). 10.1186/s12938-017-0400-5 PubMed DOI PMC
Dreem Open Datasets: Multi-Scored Sleep Datasets to Compare Human and Automated Sleep Staging | IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/document/9146268. PubMed
Nguyen-Danse, D. A. et al. Feasibility of Reconstructing Source Functional Connectivity with Low-Density EEG. Brain Topogr34, 709–719 (2021). 10.1007/s10548-021-00866-w PubMed DOI PMC
Titone, S. et al. Frequency-dependent connectivity in large-scale resting-state brain networks during sleep. European Journal of Neurosciencen/a. PubMed
Sekkal, R. N., Bereksi-Reguig, F., Ruiz-Fernandez, D., Dib, N. & Sekkal, S. Automatic sleep stage classification: From classical machine learning methods to deep learning. Biomedical Signal Processing and Control77, 103751 (2022).10.1016/j.bspc.2022.103751 DOI
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R. & Kupfer, D. J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research28, 193–213 (1989). 10.1016/0165-1781(89)90047-4 PubMed DOI
Avigdor, T. et al. Consistency of electrical source imaging in presurgical evaluation of epilepsy across different vigilance states. Annals of Clinical and Translational Neurology11, 389–403 (2024). 10.1002/acn3.51959 PubMed DOI PMC
Berry, R. B. et al. AASM Scoring Manual Updates for 2017 (Version 2.4). J Clin Sleep Med13, 665–666 (2017). 10.5664/jcsm.6576 PubMed DOI PMC
Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Intell. Neuroscience2011, 8:1-8:13 (2011). PubMed PMC
Leach, S., Sousouri, G. & Huber, R. ‘High-Density-SleepCleaner’: An open-source, semi-automatic artifact removal routine tailored to high-density sleep EEG. Journal of Neuroscience Methods391, 109849 (2023). 10.1016/j.jneumeth.2023.109849 PubMed DOI
Schiller, K. et al. Focal epilepsy disrupts spindle structure and function. Sci Rep12, 11137 (2022). 10.1038/s41598-022-15147-0 PubMed DOI PMC
Srinivasan, R., Tucker, D. M. & Murias, M. Estimating the spatial Nyquist of the human EEG. Behavior Research Methods, Instruments, & Computers30, 8–19 (1998).10.3758/BF03209412 DOI
Foster, M. & Deardorff, M. Open Science Framework (OSF). Journal of the Medical Library Association105 (2017).
ANPHY Lab, ANPHY-Sleep, OSF, 10.17605/OSF.IO/R26FH (2024).10.17605/OSF.IO/R26FH DOI
Kemp, B. & Olivan, J. European data format ‘plus’ (EDF+), an EDF alike standard format for the exchange of physiological data. Clinical Neurophysiology114, 1755–1761 (2003). 10.1016/S1388-2457(03)00123-8 PubMed DOI
Kemp, B., Värri, A., Rosa, A. C., Nielsen, K. D. & Gade, J. A simple format for exchange of digitized polygraphic recordings. Electroencephalography and Clinical Neurophysiology82, 391–393 (1992). 10.1016/0013-4694(92)90009-7 PubMed DOI
Boulos, M. I. et al. Normal polysomnography parameters in healthy adults: a systematic review and meta-analysis. The Lancet Respiratory Medicine7, 533–543 (2019). 10.1016/S2213-2600(19)30057-8 PubMed DOI
Kalamangalam, G. P., Long, S. & Chelaru, M. I. Neurophysiological brain mapping of human sleep-wake states. Clinical Neurophysiology132, 1550–1563 (2021). 10.1016/j.clinph.2021.03.014 PubMed DOI
Andrillon, T. et al. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci31, 17821–17834 (2011). 10.1523/JNEUROSCI.2604-11.2011 PubMed DOI PMC
Yamin, H. G. et al. Decoding human spontaneous spiking activity in medial temporal lobe from scalp EEG. iScience26, 106391 (2023). 10.1016/j.isci.2023.106391 PubMed DOI PMC
Cirelli, C. & Tononi, G. Sleep and Synaptic Homeostasis. Sleep38, 161–162 (2015). 10.5665/sleep.4348 PubMed DOI PMC
Cirelli, C. & Tononi, G. Effects of sleep and waking on the synaptic ultrastructure. Phil. Trans. R. Soc. B375, 20190235, 10.1098/rstb.2019.0235 (2020). PubMed PMC
Navarrete, M. et al. Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults. Sleep43, zsz315 (2020). 10.1093/sleep/zsz315 PubMed DOI PMC
Ahn, E. K., Yoon, K. & Park, J.-E. Association between sleep hours and changes in cognitive function according to the morningness-eveningness type: A population-based study. Journal of Affective Disorders S0165032723013125, 10.1016/j.jad.2023.10.122 (2023). PubMed
Orczyk, J. J. & Kajikawa, Y. Magnifying Traveling Waves on the Scalp. Brain Topogr35, 162–168 (2022). 10.1007/s10548-021-00853-1 PubMed DOI PMC
Ruch, S., Schmidig, F. J., Knüsel, L. & Henke, K. Closed-loop modulation of local slow oscillations in human NREM sleep. NeuroImage264, 119682 (2022). 10.1016/j.neuroimage.2022.119682 PubMed DOI
Chen, C. et al. Hierarchical fusion detection algorithm for sleep spindle detection. Frontiers in Neuroscience17 (2023). PubMed PMC
Ellis, C. A. et al. Explainable Sleep Stage Classification with Multimodal Electrophysiology Time-series. bioRxiv, 10.1101/2021.05.04.442658 (2021). PubMed
McLeod, G. A., Ghassemi, A. & Ng, M. C. Can REM Sleep Localize the Epileptogenic Zone? A Systematic Review and Analysis. Front Neurol11, 584 (2020). 10.3389/fneur.2020.00584 PubMed DOI PMC
Frauscher, B. & Gotman, J. Sleep, oscillations, interictal discharges, and seizures in human focal epilepsy. Neurobiology of Disease127, 545–553 (2019). 10.1016/j.nbd.2019.04.007 PubMed DOI
Ng, M. & Pavlova, M. Why Are Seizures Rare in Rapid Eye Movement Sleep? Review of the Frequency of Seizures in Different Sleep Stages. Epilepsy Res Treat2013, 932790 (2013). PubMed PMC