Microfluidic Controlled Self-Assembly of Polylactide (PLA)-Based Linear and Graft Copolymers into Nanoparticles with Diverse Morphologies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39156556
PubMed Central
PMC11328328
DOI
10.1021/acspolymersau.4c00033
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study outlines the microfluidic (MF) controlled self-assembly of polylactide (PLA)-based linear and graft copolymers. The PLA-based copolymers (PLA-Cs) were synthesized through a convenient one-pot/one-step ROP/RAFT technique. Three distinct vinyl monomers-triethylene glycol methacrylate (TEGMA), 2-hydroxypropyl methacrylate (HPMA), and N-(2-hydroxypropyl) methacrylamide (HPMAA) were employed to prepare various copolymers: linear thermoresponsive polylactide-b-poly(triethylene glycol methacrylate) (PLA-b-PTEGMA), graft pseudothermoresponsive poly[N-(2-hydroxypropyl)] methacrylate-g-polylactide (PHPMA-g-PLA), and graft amphiphilic poly[N-(2-hydroxypropyl)] methacrylamide-g-polylactide (PHPMAA-g-PLA). The MF technology was utilized for the controlled self-assembly of these PLA-based BCs in a solution, resulting in a range of nanoparticle (NP) morphologies. The thermoresponsive PLA-b-PTEGMA diblock copolymer formed thermodynamically stable micelles (Ms) through kinetically controlled assemblies. Similarly, employing MF channels led to the self-assembly of PHPMA-g-PLA, yielding polymersomes (PSs) with adjustable sizes under the same solution conditions. Conversely, the PHPMAA-g-PLA copolymer generated worm-like particles (Ws). The analysis of resulting nano-objects involves techniques such as transmission electron microscopy, dynamic light scattering investigations (DLS), and small-angle X-ray scattering (SAXS). More specifically, the thermoresponsive behavior of PLA-b-PTEGMA and PHPMA-g-PLA nano-objects is validated through variable-temperature DLS, TEM, and SAXS methods. Furthermore, the study explored the specific interactions between the formed Ms, PSs, and/or Ws with proteins in human blood plasma, utilizing isothermal titration calorimetry.
Zobrazit více v PubMed
Uhrig D.; Mays J. W. Synthesis of Combs, Centipedes, and Barbwires: Poly(Isoprene- Graft -Styrene) Regular Multigraft Copolymers with Trifunctional, Tetrafunctional, and Hexafunctional Branch Points. Macromolecules 2002, 35 (19), 7182–7190. 10.1021/ma020427l. DOI
Hadjichristidis N.; Iatrou H.; Pitsikalis M.; Mays J. Macromolecular Architectures by Living and Controlled/Living Polymerizations. Prog. Polym. Sci. 2006, 31 (12), 1068–1132. 10.1016/j.progpolymsci.2006.07.002. DOI
Oh J. K. Polylactide (PLA)-Based Amphiphilic Block Copolymers: Synthesis, Self-Assembly, and Biomedical Applications. Soft Matter 2011, 7 (11), 5096.10.1039/c0sm01539c. DOI
Song J.; Xu J.; Pispas S.; Zhang G. One-pot synthesis of poly(l-lactide)-b-poly(methyl methacrylate) block copolymers. RSC Adv. 2015, 5 (48), 38243–38247. 10.1039/C4RA17202G. DOI
Du J.; Armes S. P. Patchy Multi-Compartment Micelles Are Formed by Direct Dissolution of an ABC Triblock Copolymer in Water. Soft Matter 2010, 6 (19), 4851.10.1039/c0sm00258e. DOI
Wang X.-J.; Li G.-W.; Mo M.-Y.; Shi S.-H.; Li S.-Y.; Liu X.-Y.; Liu L.-T. Synthesis of Poly(3-Hexylthiophene)- Block -Poly(Phenylisocyanide) Copolymers and Their Self-Assembly in Solution. Polym. Chem. 2022, 13 (46), 6361–6368. 10.1039/D2PY01111E. DOI
Trützschler A.; Leiske M. N.; Strumpf M.; Brendel J. C.; Schubert U. S. One-Pot Synthesis of Block Copolymers by a Combination of Living Cationic and Controlled Radical Polymerization. Macromol. Rapid Commun. 2019, 40 (1), 1800398.10.1002/marc.201800398. PubMed DOI
de Freitas A. G. O.; Trindade S. G.; Muraro P. I. R.; Schmidt V.; Satti A. J.; Villar M. A.; Ciolino A. E.; Giacomelli C. Controlled One-Pot Synthesis of Polystyrene- Block -Polycaprolactone Copolymers by Simultaneous RAFT and ROP. Macromol. Chem. Phys. 2013, 214 (20), 2336–2344. 10.1002/macp.201300416. DOI
Xu J.; Wang X.; Hadjichristidis N. Diblock Dialternating Terpolymers by One-Step/One-Pot Highly Selective Organocatalytic Multimonomer Polymerization. Nat. Commun. 2021, 12 (1), 7124.10.1038/s41467-021-27377-3. PubMed DOI PMC
Saeed A. O.; Dey S.; Howdle S. M.; Thurecht K. J.; Alexander C. One-Pot Controlled Synthesis of Biodegradable and Biocompatible Co-Polymer Micelles. J. Mater. Chem. 2009, 19 (26), 4529.10.1039/b821736j. DOI
You Y.; Hong C.; Wang W.; Lu W.; Pan C. Preparation and Characterization of Thermally Responsive and Biodegradable Block Copolymer Comprised of PNIPAAM and PLA by Combination of ROP and RAFT Methods. Macromolecules 2004, 37 (26), 9761–9767. 10.1021/ma048444t. DOI
Seo M.; Murphy C. J.; Hillmyer M. A. One-Step Synthesis of Cross-Linked Block Polymer Precursor to a Nanoporous Thermoset. ACS Macro Lett. 2013, 2 (7), 617–620. 10.1021/mz400192f. PubMed DOI
Li Y.; Themistou E.; Zou J.; Das B. P.; Tsianou M.; Cheng C. Facile Synthesis and Visualization of Janus Double-Brush Copolymers. ACS Macro Lett. 2012, 1 (1), 52–56. 10.1021/mz200013e. PubMed DOI
Warren N. J.; Armes S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nano-Objects via RAFT Aqueous Dispersion Polymerization. J. Am. Chem. Soc. 2014, 136 (29), 10174–10185. 10.1021/ja502843f. PubMed DOI PMC
Jain S.; Bates F. S. On the Origins of Morphological Complexity in Block Copolymer Surfactants. Science 2003, 300 (5618), 460–464. 10.1126/science.1082193. PubMed DOI
Ward M. A.; Georgiou T. K. Thermoresponsive Polymers for Biomedical Applications. Polymers 2011, 3 (3), 1215–1242. 10.3390/polym3031215. DOI
Gaucher G.; Dufresne M.-H.; Sant V. P.; Kang N.; Maysinger D.; Leroux J.-C. Block Copolymer Micelles: Preparation, Characterization and Application in Drug Delivery. J. Controlled Release 2005, 109 (1–3), 169–188. 10.1016/j.jconrel.2005.09.034. PubMed DOI
Ratcliffe L. P. D.; Derry M. J.; Ianiro A.; Tuinier R.; Armes S. P. A Single Thermoresponsive Diblock Copolymer Can Form Spheres, Worms or Vesicles in Aqueous Solution. Angew. Chem., Int. Ed. 2019, 58 (52), 18964–18970. 10.1002/anie.201909124. PubMed DOI PMC
Neal T. J.; Parnell A. J.; King S. M.; Beattie D. L.; Murray M. W.; Williams N. S. J.; Emmett S. N.; Armes S. P.; Spain S. G.; Mykhaylyk O. O. Control of Particle Size in the Self-Assembly of Amphiphilic Statistical Copolymers. Macromolecules 2021, 54 (3), 1425–1440. 10.1021/acs.macromol.0c02341. PubMed DOI PMC
Mai Y.; Eisenberg A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41 (18), 5969.10.1039/c2cs35115c. PubMed DOI
Warren N. J.; Rosselgong J.; Madsen J.; Armes S. P. Disulfide-Functionalized Diblock Copolymer Worm Gels. Biomacromolecules 2015, 16 (8), 2514–2521. 10.1021/acs.biomac.5b00767. PubMed DOI
Lovett J. R.; Ratcliffe L. P. D.; Warren N. J.; Armes S. P.; Smallridge M. J.; Cracknell R. B.; Saunders B. R. A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly. Macromolecules 2016, 49 (8), 2928–2941. 10.1021/acs.macromol.6b00422. PubMed DOI PMC
An Z.; Shi Q.; Tang W.; Tsung C.-K.; Hawker C. J.; Stucky G. D. Facile RAFT Precipitation Polymerization for the Microwave-Assisted Synthesis of Well-Defined, Double Hydrophilic Block Copolymers and Nanostructured Hydrogels. J. Am. Chem. Soc. 2007, 129 (46), 14493–14499. 10.1021/ja0756974. PubMed DOI
Allen C.; Maysinger D.; Eisenberg A. Nano-Engineering Block Copolymer Aggregates for Drug Delivery. Colloids Surf., B 1999, 16 (1–4), 3–27. 10.1016/S0927-7765(99)00058-2. DOI
Reineke T. M. Stimuli-Responsive Polymers for Biological Detection and Delivery. ACS Macro Lett. 2016, 5 (1), 14–18. 10.1021/acsmacrolett.5b00862. PubMed DOI
Rahikkala A.; Aseyev V.; Tenhu H.; Kauppinen E. I.; Raula J. Thermoresponsive Nanoparticles of Self-Assembled Block Copolymers as Potential Carriers for Drug Delivery and Diagnostics. Biomacromolecules 2015, 16 (9), 2750–2756. 10.1021/acs.biomac.5b00690. PubMed DOI
Marsili L.; Dal Bo M.; Berti F.; Toffoli G. Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System. Pharmaceutics 2021, 13 (11), 1876.10.3390/pharmaceutics13111876. PubMed DOI PMC
Markvicheva E. A.; Lozinsky V. I.; Plieva F. M.; Kochetkov K. A.; Rumsh L. D.; Zubov V. P.; Maity J.; Kumar R.; Parmar V. S.; Belokon Y. N. Gel-Immobilized Enzymes as Promising Biocatalysts: Results from Indo-Russian Collaborative Studies. Pure Appl. Chem. 2005, 77 (1), 227–236. 10.1351/pac200577010227. DOI
Markvicheva E. A.; Kuptsova S. V.; Mareeva T. Y.; Vikhrov A. A.; Dugina T. N.; Strukova S. M.; Belokon Y. N.; Kochetkov K. A.; Baranova E. N.; Zubov V. P.; Poncelet D.; Parmar V. S.; Kumar R.; Rumsh L. D. Immobilized Enzymes and Cells in Poly(N-Vinyl Caprolactam)-Based Hydrogels: Preparation, Properties, and Applications in Biotechnology and Medicine. Appl. Biochem. Biotechnol. 2000, 88 (1–3), 145–158. 10.1385/ABAB:88:1-3:145. DOI
Galaev I. Y.; Mattiasson B. Affinity Thermoprecipitation of Trypsin Using Soybean Trypsin Inhibitor Conjugated with a Thermo-Reactive Polymer, Poly(N-Vinyl Caprolactam). Biotechnol. Technol. 1992, 6 (4), 353–358. 10.1007/BF02439325. DOI
Duceppe N.; Tabrizian M. Advances in Using Chitosan-Based Nanoparticles for in Vitro and in Vivo Drug and Gene Delivery. Expert Opin. Drug Delivery 2010, 7 (10), 1191–1207. 10.1517/17425247.2010.514604. PubMed DOI
Maeda T.; Akasaki Y.; Yamamoto K.; Aoyagi T. Stimuli-Responsive Coacervate Induced in Binary Functionalized Poly(N -Isopropylacrylamide) Aqueous System and Novel Method for Preparing Semi-IPN Microgel Using the Coacervate. Langmuir 2009, 25 (16), 9510–9517. 10.1021/la9007735. PubMed DOI
Soppimath K. S.; Aminabhavi T. M.; Dave A. M.; Kumbar S. G.; Rudzinski W. E. Stimulus-Responsive “Smart” Hydrogels as Novel Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28 (8), 957–974. 10.1081/DDC-120006428. PubMed DOI
Lutz J.-F. Polymerization of Oligo(Ethylene Glycol) (Meth)Acrylates: Toward New Generations of Smart Biocompatible Materials. J. Polym. Sci., Part A: Polym. Chem. 2008, 46 (11), 3459–3470. 10.1002/pola.22706. DOI
Karatza A.; Pispas S. Poly(Hydroxyl Propyl Methacrylate)- b -Poly(Oligo Ethylene Glycol Methacrylate) Thermoresponsive Block Copolymers by RAFT Polymerization. Macromol. Chem. Phys. 2018, 219 (12), 1800060.10.1002/macp.201800060. DOI
Yamamoto S.-I.; Pietrasik J.; Matyjaszewski K. The Effect of Structure on the Thermoresponsive Nature of Well-Defined Poly(Oligo(Ethylene Oxide) Methacrylates) Synthesized by ATRP. J. Polym. Sci., Part A: Polym. Chem. 2008, 46 (1), 194–202. 10.1002/pola.22371. DOI
Warren N. J.; Mykhaylyk O. O.; Mahmood D.; Ryan A. J.; Armes S. P. RAFT Aqueous Dispersion Polymerization Yields Poly(Ethylene Glycol)-Based Diblock Copolymer Nano-Objects with Predictable Single Phase Morphologies. J. Am. Chem. Soc. 2014, 136 (3), 1023–1033. 10.1021/ja410593n. PubMed DOI PMC
Varlas S.; Neal T. J.; Armes S. P. Polymerization-Induced Self-Assembly and Disassembly during the Synthesis of Thermoresponsive ABC Triblock Copolymer Nano-Objects in Aqueous Solution. Chem. Sci. 2022, 13 (24), 7295–7303. 10.1039/D2SC01611G. PubMed DOI PMC
Ning Y.; Han L.; Derry M. J.; Meldrum F. C.; Armes S. P. Model Anionic Block Copolymer Vesicles Provide Important Design Rules for Efficient Nanoparticle Occlusion within Calcite. J. Am. Chem. Soc. 2019, 141 (6), 2557–2567. 10.1021/jacs.8b12507. PubMed DOI
Foster J. C.; Varlas S.; Couturaud B.; Jones J. R.; Keogh R.; Mathers R. T.; O’Reilly R. K. Predicting Monomers for Use in Polymerization-Induced Self-Assembly. Angew. Chem., Int. Ed. 2018, 57 (48), 15733–15737. 10.1002/anie.201809614. PubMed DOI
Lutz J.-F.; Akdemir O. ¨.; Hoth A. Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST: Is the Age of Poly(NIPAM) Over?. J. Am. Chem. Soc. 2006, 128 (40), 13046–13047. 10.1021/ja065324n. PubMed DOI
Cai T.; Marquez M.; Hu Z. Monodisperse Thermoresponsive Microgels of Poly(Ethylene Glycol) Analogue-Based Biopolymers. Langmuir 2007, 23 (17), 8663–8666. 10.1021/la700923r. PubMed DOI
Doncom K. E. B.; Warren N. J.; Armes S. P. Polysulfobetaine-Based Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly. Polym. Chem. 2015, 6 (41), 7264–7273. 10.1039/C5PY00396B. DOI
Ratcliffe L. P. D.; Blanazs A.; Williams C. N.; Brown S. L.; Armes S. P. RAFT Polymerization of Hydroxy-Functional Methacrylic Monomers under Heterogeneous Conditions: Effect of Varying the Core-Forming Block. Polym. Chem. 2014, 5 (11), 3643–3655. 10.1039/C4PY00203B. DOI
Blanazs A.; Verber R.; Mykhaylyk O. O.; Ryan A. J.; Heath J. Z.; Douglas C. W. I.; Armes S. P. Sterilizable Gels from Thermoresponsive Block Copolymer Worms. J. Am. Chem. Soc. 2012, 134 (23), 9741–9748. 10.1021/ja3024059. PubMed DOI
Penfold N. J. W.; Whatley J. R.; Armes S. P. Thermoreversible Block Copolymer Worm Gels Using Binary Mixtures of PEG Stabilizer Blocks. Macromolecules 2019, 52 (4), 1653–1662. 10.1021/acs.macromol.8b02491. DOI
Albuquerque L. J. C.; Sincari V.; Jäger A.; Konefał R.; Pánek J.; Černoch P.; Pavlova E.; Štěpánek P.; Giacomelli F. C.; Jäger E. Microfluidic-Assisted Engineering of Quasi-Monodisperse PH-Responsive Polymersomes toward Advanced Platforms for the Intracellular Delivery of Hydrophilic Therapeutics. Langmuir 2019, 35, 9b01009.10.1021/acs.langmuir.9b01009. PubMed DOI
Jäger E.; Jäger A.; Etrych T.; Giacomelli F. C.; Chytil P.; Jigounov A.; Putaux J.-L.; Říhová B.; Ulbrich K.; Štěpánek P. Self-Assembly of Biodegradable Copolyester and Reactive HPMA-Based Polymers into Nanoparticles as an Alternative Stealth Drug Delivery System. Soft Matter 2012, 8 (37), 9563.10.1039/c2sm26150b. DOI
Barz M.; Wolf F. K.; Canal F.; Koynov K.; Vicent M. J.; Frey H.; Zentel R. Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. Macromol. Rapid Commun. 2010, 31 (17), 1492–1500. 10.1002/marc.201000090. PubMed DOI
Lukáš Petrova S.; Vragović M.; Pavlova E.; Černochová Z.; Jäger A.; Jäger E.; Konefał R. Smart Poly(Lactide)-b-Poly(Triethylene Glycol Methyl Ether Methacrylate) (PLA-b-PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel. Pharmaceutics 2023, 15 (4), 1191.10.3390/pharmaceutics15041191. PubMed DOI PMC
Petrova S. L.; Pavlova E.; Pokorný V.; Sincari V. Effect of Polymer Concentration on the Morphology of the PHPMAA- g -PLA Graft Copolymer Nanoparticles Produced by Microfluidics Nanoprecipitation. Nanoscale Adv. 2024, 6 (8), 1992–1996. 10.1039/D3NA01038D. PubMed DOI PMC
Lukáš Petrova S.; Sincari V.; Konefał R.; Pavlova E.; Lobaz V.; Kočková O.; Hrubý M. One-Pot/Simultaneous Synthesis of PHPMA- G -PLA Copolymers via Metal-Free Rop/Raft Polymerization and Their Self-Assembly from Micelles to Thermoresponsive Vesicles. Macromol. Chem. Phys. 2023, 224 (23), 2300271.10.1002/macp.202300271. DOI
Uhrich K. E.; Cannizzaro S. M.; Langer R. S.; Shakesheff K. M. Polymeric Systems for Controlled Drug Release. Chem. Rev. 1999, 99 (11), 3181–3198. 10.1021/cr940351u. PubMed DOI
Singhvi M. S.; Zinjarde S. S.; Gokhale D. V. Polylactic Acid: Synthesis and Biomedical Applications. J. Appl. Microbiol. 2019, 127 (6), 1612–1626. 10.1111/jam.14290. PubMed DOI
Jacobson G. B.; Shinde R.; Contag C. H.; Zare R. N. Sustained Release of Drugs Dispersed in Polymer Nanoparticles. Angew. Chem., Int. Ed. 2008, 47 (41), 7880–7882. 10.1002/anie.200802260. PubMed DOI PMC
Giammona G.; Craparo E. Biomedical Applications of Polylactide (PLA) and Its Copolymers. Molecules 2018, 23 (4), 980.10.3390/molecules23040980. PubMed DOI PMC
Wu Y.-L.; Wang H.; Qiu Y.-K.; Loh X. J. PLA-Based Thermogel for the Sustained Delivery of Chemotherapeutics in a Mouse Model of Hepatocellular Carcinoma. RSC Adv. 2016, 6 (50), 44506–44513. 10.1039/C6RA08022G. DOI
Kramschuster A.; Turng L.-S. An Injection Molding Process for Manufacturing Highly Porous and Interconnected Biodegradable Polymer Matrices for Use as Tissue Engineering Scaffolds. J. Biomed. Mater. Res., Part B 2009, 92B, 366–376. 10.1002/jbm.b.31523. PubMed DOI
Xu J.; Zhang S.; Machado A.; Lecommandoux S.; Sandre O.; Gu F.; Colin A. Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor. Sci. Rep. 2017, 7 (1), 4794.10.1038/s41598-017-05184-5. PubMed DOI PMC
Tan Z.; Lan W.; Liu Q.; Wang K.; Hussain M.; Ren M.; Geng Z.; Zhang L.; Luo X.; Zhang L.; Zhu J. Kinetically Controlled Self-Assembly of Block Copolymers into Segmented Wormlike Micelles in Microfluidic Chips. Langmuir 2019, 35 (1), 141–149. 10.1021/acs.langmuir.8b03028. PubMed DOI
Ulbrich K.; Šubr V.; Strohalm J.; Plocová D.; Jelínková M.; Říhová B. Polymeric Drugs Based on Conjugates of Synthetic and Natural Macromolecules. J. Controlled Release 2000, 64 (1–3), 63–79. 10.1016/S0168-3659(99)00141-8. PubMed DOI
Danial M.; Telwatte S.; Tyssen D.; Cosson S.; Tachedjian G.; Moad G.; Postma A. Combination Anti-HIV Therapy via Tandem Release of Prodrugs from Macromolecular Carriers. Polym. Chem. 2016, 7 (48), 7477–7487. 10.1039/C6PY01882C. DOI
Zhang Q.; Weber C.; Schubert U. S.; Hoogenboom R. Thermoresponsive Polymers with Lower Critical Solution Temperature: From Fundamental Aspects and Measuring Techniques to Recommended Turbidimetry Conditions. Mater. Horiz. 2017, 4 (2), 109–116. 10.1039/C7MH00016B. DOI
Halperin A.; Kröger M.; Winnik F. M. Poly(N -isopropylacrylamide) Phase Diagrams: Fifty Years of Research. Angew. Chem., Int. Ed. 2015, 54 (51), 15342–15367. 10.1002/anie.201506663. PubMed DOI
Guinier A.; Fournet G.; Walker C. B.; Vineyard G. H. Small-Angle Scattering of X-Rays. Phys. Today 1956, 9 (8), 38–39. 10.1063/1.3060069. DOI
Themistou E.; Battaglia G.; Armes S. P. Facile Synthesis of Thiol-Functionalized Amphiphilic Polylactide-Methacrylic Diblock Copolymers. Polym. Chem. 2014, 5 (4), 1405–1417. 10.1039/C3PY01446K. DOI
Blanazs A.; Armes S. P.; Ryan A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009, 30 (4–5), 267–277. 10.1002/marc.200800713. PubMed DOI
Le Fer G.; Portes D.; Goudounet G.; Guigner J.-M.; Garanger E.; Lecommandoux S. Design and Self-Assembly of PBLG- b -ELP Hybrid Diblock Copolymers Based on Synthetic and Elastin-like Polypeptides. Org. Biomol. Chem. 2017, 15 (47), 10095–10104. 10.1039/C7OB01945A. PubMed DOI
Tan J.; Bai Y.; Zhang X.; Zhang L. Room Temperature Synthesis of Poly(Poly(Ethylene Glycol) Methyl Ether Methacrylate)-Based Diblock Copolymer Nano-Objects via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA). Polym. Chem. 2016, 7 (13), 2372–2380. 10.1039/C6PY00022C. DOI
Docherty P. J.; Girou C.; Derry M. J.; Armes S. P. Epoxy-Functional Diblock Copolymer Spheres, Worms and Vesicles via Polymerization-Induced Self-Assembly in Mineral Oil. Polym. Chem. 2020, 11 (19), 3332–3339. 10.1039/D0PY00380H. DOI
Parkinson S.; Knox S. T.; Bourne R. A.; Warren N. J. Rapid Production of Block Copolymer Nano-Objects via Continuous-Flow Ultrafast RAFT Dispersion Polymerisation. Polym. Chem. 2020, 11 (20), 3465–3474. 10.1039/D0PY00276C. DOI
Pedersen J. S. Form Factors of Block Copolymer Micelles with Spherical, Ellipsoidal and Cylindrical Cores. J. Appl. Crystallogr. 2000, 33 (3), 637–640. 10.1107/S0021889899012248. DOI
Guinier A.; Lorrain P.; Lorrain D. S.-M.; Gillis J. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. Phys. Today 1964, 17 (4), 70–72. 10.1063/1.3051547. DOI