Spatial transcriptomics of fetal membrane-Decidual interface reveals unique contributions by cell types in term and preterm births
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P30 ES030285
NIEHS NIH HHS - United States
R01 HD100729
NICHD NIH HHS - United States
R01 HD110400
NICHD NIH HHS - United States
PubMed
39159152
PubMed Central
PMC11332933
DOI
10.1371/journal.pone.0309063
PII: PONE-D-24-17794
Knihovny.cz E-zdroje
- MeSH
- amnion metabolismus cytologie MeSH
- chorion metabolismus MeSH
- decidua * metabolismus MeSH
- dospělí MeSH
- extraembryonální obaly * metabolismus MeSH
- lidé MeSH
- porod v termínu genetika MeSH
- předčasný odtok plodové vody genetika metabolismus MeSH
- předčasný porod * genetika MeSH
- stanovení celkové genové exprese MeSH
- těhotenství MeSH
- transkriptom * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
During pregnancy, two fetomaternal interfaces, the placenta-decidua basalis and the fetal membrane-decidua parietals, allow for fetal growth and maturation and fetal-maternal crosstalk, and protect the fetus from infectious and inflammatory signaling that could lead to adverse pregnancy outcomes. While the placenta has been studied extensively, the fetal membranes have been understudied, even though they play critical roles in pregnancy maintenance and the initiation of term or preterm parturition. Fetal membrane dysfunction has been associated with spontaneous preterm birth (PTB, < 37 weeks gestation) and preterm prelabor rupture of the membranes (PPROM), which is a disease of the fetal membranes. However, it is unknown how the individual layers of the fetal membrane decidual interface (the amnion epithelium [AEC], the amnion mesenchyme [AMC], the chorion [CTC], and the decidua [DEC]) contribute to these pregnancy outcomes. In this study, we used a single-cell transcriptomics approach to unravel the transcriptomics network at spatial levels to discern the contributions of each layer of the fetal membranes and the adjoining maternal decidua during the following conditions: scheduled caesarian section (term not in labor [TNIL]; n = 4), vaginal term in labor (TIL; n = 3), preterm labor with and without rupture of membranes (PPROM; n = 3; and PTB; n = 3). The data included 18,815 genes from 13 patients (including TIL, PTB, PPROM, and TNIL) expressed across the four layers. After quality control, there were 11,921 genes and 44 samples. The data were processed by two pipelines: one by hierarchical clustering the combined cases and the other to evaluate heterogeneity within the cases. Our visual analytical approach revealed spatially recognized differentially expressed genes that aligned with four gene clusters. Cluster 1 genes were present predominantly in DECs and Cluster 3 centered around CTC genes in all labor phenotypes. Cluster 2 genes were predominantly found in AECs in PPROM and PTB, while Cluster 4 contained AMC and CTC genes identified in term labor cases. We identified the top 10 differentially expressed genes and their connected pathways (kinase activation, NF-κB, inflammation, cytoskeletal remodeling, and hormone regulation) per cluster in each tissue layer. An in-depth understanding of the involvement of each system and cell layer may help provide targeted and tailored interventions to reduce the risk of PTB.
Department of Physiology College of Medicine University of the Philippines Manila Manila Philippines
Zobrazit více v PubMed
Menon R, Richardson LS, Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta. Apr 2019;79:40–45. doi: 10.1016/j.placenta.2018.11.003 PubMed DOI PMC
Menon R, Moore JJ. Fetal Membranes, Not a Mere Appendage of the Placenta, but a Critical Part of the Fetal-Maternal Interface Controlling Parturition. Obstet Gynecol Clin North Am. Mar 2020;47(1):147–162. doi: 10.1016/j.ogc.2019.10.004 PubMed DOI
Polettini J, Dutta EH, Behnia F, Saade GR, Torloni MR, Menon R. Aging of intrauterine tissues in spontaneous preterm birth and preterm premature rupture of the membranes: A systematic review of the literature. Placenta. Sep 2015;36(9):969–73. doi: 10.1016/j.placenta.2015.05.003 PubMed DOI
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol. Aug 12 2020; doi: 10.1007/s00281-020-00808-x PubMed DOI PMC
Erez O, Romero R, Tarca AL, et al.. Differential expression pattern of genes encoding for anti-microbial peptides in the fetal membranes of patients with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of the membranes. J Matern Fetal Neonatal Med. 12/2009 2009;22(12):1103–1115. Not in File. doi: 10.3109/14767050902994796 PubMed DOI PMC
Bryant-Greenwood GD. The extracellular matrix of the human fetal membranes: structure and function. Placenta. 1/1998 1998;19(1):1–11. Not in File. doi: 10.1016/s0143-4004(98)90092-3 PubMed DOI
Richardson LS, Taylor RN, Menon R. Reversible EMT and MET mediate amnion remodeling during pregnancy and labor. Sci Signal. Feb 11 2020;13(618) doi: 10.1126/scisignal.aay1486 PubMed DOI PMC
Cekmez Y, Cekmez F, Ozkaya E, et al.. uPAR, IL-33, and ST2 values as a predictor of subclinical chorioamnionitis in preterm premature rupture of membranes. J Interferon Cytokine Res. Dec 2013;33(12):778–82. doi: 10.1089/jir.2012.0151 PubMed DOI
Ferrand PE, Parry S, Sammel M, et al.. A polymorphism in the matrix metalloproteinase-9 promoter is associated with increased risk of preterm premature rupture of membranes in African Americans. Mol Hum Reprod. 5/2002 2002;8(5):494–501. Not in File. doi: 10.1093/molehr/8.5.494 PubMed DOI
El KM, Pandey V, Stetzer B, et al.. Fetal membranes from term vaginal deliveries have a zone of weakness exhibiting characteristics of apoptosis and remodeling. J Soc Gynecol Investig. 4/2006 2006;13(3):191–195. Not in File. doi: 10.1016/j.jsgi.2005.12.010 PubMed DOI
Richardson LS, Vargas G, Brown T, et al.. Discovery and Characterization of Human Amniochorionic Membrane Microfractures. Am J Pathol. Sep 19 2017; doi: 10.1016/j.ajpath.2017.08.019 PubMed DOI PMC
Mittal P, Romero R, Mazaki-Tovi S, et al.. Fetal membranes as an interface between inflammation and metabolism: increased aquaporin 9 expression in the presence of spontaneous labor at term and chorioamnionitis. J Matern Fetal Neonatal Med. 12/2009 2009;22(12):1167–1175. Not in File. doi: 10.3109/14767050903019692 PubMed DOI
Menon R, Richardson LS. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Semin Perinatol. Nov 2017;41(7):409–419. doi: 10.1053/j.semperi.2017.07.012 PubMed DOI PMC
Fox H, Faulk WP. The placenta as an experimental model 61. Clin Endocrinol Metab. 3/1981 1981;10(1):57–72. Not in File. PubMed
Lavu N, Richardson L, Radnaa E, et al.. Oxidative stress-induced downregulation of glycogen synthase kinase 3 beta in fetal membranes promotes cellular senescencedagger. Biol Reprod. Nov 21 2019;101(5):1018–1030. doi: 10.1093/biolre/ioz119 PubMed DOI PMC
Radnaa E, Richardson L, Goldman B, et al.. Stress signaler p38 mitogen-activated kinase activation: a cause for concern? Clin Sci (Lond). Nov 30 2022;136(22):1591–1614. doi: 10.1042/CS20220491 PubMed DOI PMC
Jin J, Richardson L, Sheller-Miller S, Zhong N, Menon R. Oxidative stress induces p38MAPK-dependent senescence in the feto-maternal interface cells. Placenta. Jul 2018;67:15–23. doi: 10.1016/j.placenta.2018.05.008 PubMed DOI PMC
George RB, Kalich J, Yonish B, Murtha AP. Apoptosis in the chorion of fetal membranes in preterm premature rupture of membranes. American Journal of Perinatology. 1/2008 2008;25(1):29–32. Not in File. doi: 10.1055/s-2007-1004828 PubMed DOI
Kumar D, Moore RM, Mercer BM, Mansour JM, Redline RW, Moore JJ. The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta. Jun 2016;42:59–73. doi: 10.1016/j.placenta.2016.03.015 PubMed DOI
Lei H, Furth EE, Kalluri R, et al.. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J Clin Invest. 11/1/1996 1996;98(9):1971–1978. Not in File. doi: 10.1172/JCI119001 PubMed DOI PMC
Presicce P, Park CW, Senthamaraikannan P, et al.. IL-1 signaling mediates intrauterine inflammation and chorio-decidua neutrophil recruitment and activation. JCI Insight. Mar 22 2018;3(6) doi: 10.1172/jci.insight.98306 PubMed DOI PMC
Kumar D, Schatz F, Moore RM, et al.. The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta. 3/2011 2011;32(3):206–213. Not in File. doi: 10.1016/j.placenta.2011.01.006 PubMed DOI PMC
Arechavaleta-Velasco F, Mayon-Gonzalez J, Gonzalez-Jimenez M, Hernandez-Guerrero C, Vadillo-Ortega F. Association of type II apoptosis and 92-kDa type IV collagenase expression in human amniochorion in prematurely ruptured membranes with tumor necrosis factor receptor-1 expression. J Soc Gynecol Investig. 3/2002 2002;9(2):60–67. Not in File. doi: 10.1016/s1071-5576(01)00159-9 PubMed DOI
Severino ME, Richardson LS, Kacerovsky M, Menon R. Histologic Evidence of Epithelial-Mesenchymal Transition and Autophagy in Human Fetal Membranes. Am J Pathol. Feb 4 2024; doi: 10.1016/j.ajpath.2023.12.011 PubMed DOI PMC
Severino MEL, Richardson L, Kammala AK, et al.. Autophagy Determines Distinct Cell Fates in Human Amnion and Chorion Cells. Autophagy Rep. 2024;3(1) doi: 10.1080/27694127.2024.2306086 PubMed DOI PMC
Zheng Y, Yan RZ, Sun S, et al.. Single-cell analysis of embryoids reveals lineage diversification roadmaps of early human development. Cell Stem Cell. Sep 1 2022;29(9):1402–1419 e8. doi: 10.1016/j.stem.2022.08.009 PubMed DOI PMC
Wang WS, Lin YK, Zhang F, et al.. Single cell transcriptomic analysis of human amnion identifies cell-specific signatures associated with membrane rupture and parturition. Cell Biosci. May 18 2022;12(1):64. doi: 10.1186/s13578-022-00797-4 PubMed DOI PMC
Bergholtz H, Carter JM, Cesano A, et al.. Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx(®) Digital Spatial Profiler. Cancers (Basel). 2021. vol. 17. PubMed PMC
Zimmerman SM, Fropf R, Kulasekara BR, et al.. Spatially resolved whole transcriptome profiling in human and mouse tissue using Digital Spatial Profiling. Genome Res. Oct 2022;32(10):1892–1905. doi: 10.1101/gr.276206.121 PubMed DOI PMC
Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. Jan 16 2013;14:7. doi: 10.1186/1471-2105-14-7 PubMed DOI PMC
L.Richardson G, Vargas TB, L. Ochoa, J. Travedi, M. Kacerovsky, M. Lappas, et al., 3Dimensional placental membrane microarchitecture, optical umpma, clearing P. PubMed
Menon R, Boldogh I, Hawkins HK, et al.. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am J Pathol. Jun 2014;184(6):1740–51. doi: 10.1016/j.ajpath.2014.02.011 PubMed DOI
Pan J, Tian X, Huang H, Zhong N. Proteomic Study of Fetal Membrane: Inflammation-Triggered Proteolysis of Extracellular Matrix May Present a Pathogenic Pathway for Spontaneous Preterm Birth. Front Physiol. 2020;11:800. doi: 10.3389/fphys.2020.00800 PubMed DOI PMC
Underhill LA, Mennella JM, Tollefson GA, Uzun A, Lechner BE. Transcriptomic analysis delineates preterm prelabor rupture of membranes from preterm labor in preterm fetal membranes. BMC Med Genomics. Mar 5 2024;17(1):72. doi: 10.1186/s12920-024-01841-7 PubMed DOI PMC
Bhunia S, O’Brien S, Ling Y, Huang Z, Wu P, Yang Y. New approaches suggest term and preterm human fetal membranes may have distinct biomechanical properties. Sci Rep. Mar 24 2022;12(1):5109. doi: 10.1038/s41598-022-09005-2 PubMed DOI PMC
Eidem HR, Ackerman WEt, McGary KL, Abbot P, Rokas A. Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis. BMC Med Genomics. Jun 5 2015;8:27. doi: 10.1186/s12920-015-0099-8 PubMed DOI PMC
Menon R. Spontaneous preterm birth, a clinical dilemma: etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand. 2008 2008;87(6):590–600. Not in File. doi: 10.1080/00016340802005126 PubMed DOI
Vidal MS Jr., Lintao RCV, Severino MEL, Tantengco OAG, Menon R. Spontaneous preterm birth: Involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol (Lausanne). 2022;13:1015622. doi: 10.3389/fendo.2022.1015622 PubMed DOI PMC
Mendelson CR. Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol. Jul 2009;23(7):947–54. doi: 10.1210/me.2009-0016 PubMed DOI PMC
Renthal NE, Williams KC, Montalbano AP, Chen CC, Gao L, Mendelson CR. Molecular Regulation of Parturition: A Myometrial Perspective. Cold Spring Harb Perspect Med. Sep 3 2015;5(11) doi: 10.1101/cshperspect.a023069 PubMed DOI PMC
Smith R, Nicholson RC. Corticotrophin releasing hormone and the timing of birth. Front Biosci. 2007. 2007;12:912–918. Not in File. doi: 10.2741/2113 PubMed DOI
Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 8/15/2014 2014;345(6198):760–765. Not in File. doi: 10.1126/science.1251816 PubMed DOI PMC
Du L, Deng W, Zeng S, et al.. Single-cell transcriptome analysis reveals defective decidua stromal niche attributes to recurrent spontaneous abortion. Cell Prolif. Nov 2021;54(11):e13125. doi: 10.1111/cpr.13125 PubMed DOI PMC
Guo C, Cai P, Jin L, et al.. Single-cell profiling of the human decidual immune microenvironment in patients with recurrent pregnancy loss. Cell Discov. Jan 4 2021;7(1):1. doi: 10.1038/s41421-020-00236-z PubMed DOI PMC
Ji K, Chen L, Wang X, et al.. Integrating single-cell RNA sequencing with spatial transcriptomics reveals an immune landscape of human myometrium during labour. Clin Transl Med. Apr 2023;13(4):e1234. doi: 10.1002/ctm2.1234 PubMed DOI PMC
Koh W, Wu A, Penland L, et al.. Single Cell Transcriptomes Derived from Human Cervical and Uterine Tissue during Pregnancy. Adv Biosyst. Nov 2019;3(11):e1800336. doi: 10.1002/adbi.201800336 PubMed DOI
Vento-Tormo R, Efremova M, Botting RA, et al.. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. Nov 2018;563(7731):347–353. doi: 10.1038/s41586-018-0698-6 PubMed DOI PMC
Pique-Regi R, Romero R, Tarca AL, et al.. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife. Dec 12 2019;8 doi: 10.7554/eLife.52004 PubMed DOI PMC
Hadley EE, Richardson LS, Torloni MR, Menon R. Gestational tissue inflammatory biomarkers at term labor: A systematic review of literature. Am J Reprod Immunol. Oct 27 2017; doi: 10.1111/aji.12776 PubMed DOI PMC
Skinner KA, Challis JR. Changes in the synthesis and metabolism of prostaglandins by human fetal membranes and decidua at labor. Am J Obstet Gynecol. Feb 15 1985;151(4):519–23. doi: 10.1016/0002-9378(85)90281-9 PubMed DOI
Richardson L, Menon R. Proliferative, Migratory, and Transition Properties Reveal Metastate of Human Amnion Cells. Am J Pathol. Jul 6 2018; doi: 10.1016/j.ajpath.2018.05.019 PubMed DOI PMC
Janzen C, Sen S, Lei MY, Gagliardi de Assumpcao M, Challis J, Chaudhuri G. The Role of Epithelial to Mesenchymal Transition in Human Amniotic Membrane Rupture. J Clin Endocrinol Metab. Apr 01 2017;102(4):1261–1269. doi: 10.1210/jc.2016-3150 PubMed DOI PMC
Mogami H, Hari Kishore A, Akgul Y, Word RA. Healing of Preterm Ruptured Fetal Membranes. Sci Rep. Oct 13 2017;7(1):13139. doi: 10.1038/s41598-017-13296-1 PubMed DOI PMC