Insecticidal activity of isoborneol derivatives against Musca domestica adults and Culex quinquefasciatus larvae
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Project MZE-RO0418
Ministerstvo Vnitra České Republiky
PubMed
39174827
DOI
10.1007/s11356-024-34719-3
PII: 10.1007/s11356-024-34719-3
Knihovny.cz E-zdroje
- Klíčová slova
- Culex quinquefasciatus, Musca domestica, Ethers, Isoborneol esters, Thioethers,
- MeSH
- Culex * účinky léků MeSH
- insekticidy * farmakologie chemie MeSH
- larva * účinky léků MeSH
- moucha domácí * účinky léků MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- insekticidy * MeSH
Musca domestica L., a common housefly, and Culex quinquefasciatus mosquito are quite well-known pests that can transfer a wide range of diseases to humans as well as animals. In this study, various isoborneol derivatives including esters, ethers, and thioethers were synthesized from isoborneol under mild conditions. These derivatives were evaluated for inhibition of house-fly M. domestica adults and Cx. quinquefasciatus larvae. Two of the synthesized isoborneol ester derivatives (2 and 3) showed good activity against both insect species. Additional two derivatives (6 and 9) were active against M. domestica L., and the derivatives (1-3, 8) were active against Cx. quinquefasciatus larvae.
Crop Research Institute Drnovska 507 161 06 Prague 6 Ruzyne Czech Republic
K J Somaiya College of Science and Commerce Vidyavihar Mumbai 400086 Maharashtra India
Zobrazit více v PubMed
Benelli G, Pavela R, Zorzetto C, Sanchez-Mateo CC, Santini G, Canale A, Maggi F (2019) Insecticidal activity of essential oils from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol Gen 39:9–18. https://doi.org/10.1127/entomologia/2019/0662 DOI
Blaske VU, Hertel H, Forschler BT (2003) Repellent effects of isoborneol on subterranean termites (Isoptera:Rhinotermitidae) in soils of different compositions. J Econ Entomol 96:1267–1274. https://doi.org/10.1603/0022-0493(2003)096 DOI
Finney DJ (1971) Probit analysis. Cambridge University London, 68–78
Kuwano E, Sato N, Eto M (1982) Insecticidal benzimidazoles with a terpenoid moeity. Agricul Biol Chem 46:1715–1716. https://doi.org/10.1080/00021369.1982.10865318 DOI
Nunes RKV, Martins NU, Brito BT, Nepel A, Costo VE, Barrson A, Santos LCR, Cavalcanti CHS (2018) Evaluation of (-)-borneol derivatives against the Zika vector, Aedes aegyptia and a non-target species, Artemia sp. Environ Sci Pollut Res Int 25:31165–31174. https://doi.org/10.1007/s11356-018-2809-1 DOI
Pavela R, Benelli G, Canale A, Maggi F, Martonfi P (2020) Exploring essential oils of Slovak medicinal plants for insecticidal activity: the case of Thymus alternans and Teucrium montanum subsp. jailae. Food Chem Toxicol 138:1–6. https://doi.org/10.1016/j.fct.2020.111203 DOI
Pavela R, Maggi F, Kamte SN, Rakotosaona R, Rasoanavo P, Nicoletti M, Canake A, Benelli G (2017) Chemical composition of Cinnamosma madagascariensis (Cannelaceae) essential oil and its larvicidal potential against the filariasis vector Culex quinquefasciatus Say. South Afr J Bot 108:359–363. https://doi.org/10.1016/j.sajb.2016.08.017 DOI
Rodríguez-Valdez LM, Andrarde-Ochoa S, Sanchez-Torres LE, Nogueda-Torres B, Correa-Basurto J, Nevarez-Moorillion GV (2018) In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae). Chem Cent J 12:53–74. https://doi.org/10.1186/s13065-018-0425-2 DOI
Silva WJ, Dória GAA, Maia RT, Nunes RS, Carvalho GA, Blank AF, Alves PB, Marçal RM, Cavalcanti SCH (2008) Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol 99:3251–3255. https://doi.org/10.1016/j.biortech.2007.05.064 DOI
Sokolova AS, Yarovaya OI, Semenova MD, Shtro AA, Orshanskaya IR, Zarubaev VV, Salakhutdinov NF (2013) Synthesis and in vitro study of the novel borneol derivatives as potent inhibitors of influenza virus. Med Chem Comm 8:960–963. https://doi.org/10.1039/c6md00657d DOI
Stevenson PC, Isman MB, Belmain SR (2017) Pesticidal plants in Africa: a global vision of new biological control products from local uses. Ind Crop Prod 110:2–9. https://doi.org/10.1016/j.indcrop.2017.08.034 DOI
Tomlin CDS (ed) (2000) The Pesticide Manual (British Crop Protection Council, Farnham, 2000), 12th edn
WHO (1996) Report of the WHO informal consultation on the evaluation and testing of insecticides pp 69 CTD/WHOPES/IC/96.1
Zhang Z, Wang Y, Wang L, Xie Y, Lin Z (2017) Toxicities of monoterpenes against housefly, Musca domesticaL. (Diptera: Muscidae). Environ Sci Pollut Res 24:24708–24713. https://doi.org/10.1007/s11356-017-0219-4 DOI