A novel thrombocytopenia-4-causing CYCS gene variant decreases caspase activity: Three-generation study

. 2024 Dec ; 205 (6) : 2450-2458. [epub] 20240827

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39191490

Grantová podpora
NU20-08-00137 Ministry of Health, Czech Republic
LX22NPO5102 European Union-Next Generation EU
MUNI/A/1224/2022 Masaryk University
MUNI/11/SUP/22/2020 Masaryk University
CZ.02.1.01/0.0/0.0/16_026/0008448 European Regional Development Fund
FNBr,65269705 Ministry of Health, Czech Republic-conceptual development of research organization

The CYCS gene is highly evolutionarily conserved, with only a few pathogenic variants that cause thrombocytopenia-4 (THC4). Here, we report a novel CYCS variant NM_018947.6: c.59C>T [NP_061820.1:p.(Thr20Ile)] segregating with thrombocytopenia in three generations of a Czech family. The phenotype of the patients corresponds to THC4 with platelets of normal size and morphology and dominant inheritance. Intriguingly, a gradual decline in platelet counts was observed across generations. CRISPR/Cas9-mediated gene editing was used to introduce the new CYCS gene variant into a megakaryoblast cell line (MEG-01). Subsequently, the adhesion, shape, size, ploidy, viability, mitochondrial respiration, cytochrome c protein (CYCS) expression, cell surface antigen expression and caspase activity were analysed in cells carrying the studied variant. Interestingly, the variant decreases the expression of CYCS while increasing mitochondrial respiration and the expression of CD9 cell surface antigen. Surprisingly, the variant abates caspase activation, contrasting with previously known effects of other CYCS variants. Some reports indicate that caspases may be involved in thrombopoiesis; thus, the observed dysregulation of caspase activity might contribute to thrombocytopenia. The findings significantly enhance our understanding of the molecular mechanisms underlying inherited thrombocytopenia and may have implications for diagnosis, prognosis and future targeted therapies.

Zobrazit více v PubMed

Che F, Zhao J, Zhao Y, Wang Z, Zhang L, Yang Y. A novel heterozygous pathogenic variation in CYCS gene cause autosomal dominant non‐syndromic thrombocytopenia 4 in a large Chinese family. Front Genet. 2022;12:1–6. PubMed PMC

Morison IM, Cramer Bordé EM, Cheesman EJ, Cheong PL, Holyoake AJ, Fichelson S, et al. A mutation of human cytochrome c enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet. 2008;40(4):387–389. PubMed

De Rocco D, Cerqua C, Goffrini P, Russo G, Pastore A, Meloni F, et al. Mutations of cytochrome c identified in patients with thrombocytopenia THC4 affect both apoptosis and cellular bioenergetics. Biochim Biophys Acta Mol Basis Dis. 2014;1842(2):269–274. 10.1016/j.bbadis.2013.12.002 PubMed DOI

Johnson B, Lowe GC, Futterer J, Lordkipanidzé M, Macdonald D, Simpson MA, et al. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica. 2016;101(10):1170–1179. PubMed PMC

Gilad O, Dgany O, Noy‐Lotan S, Krasnov T, Yacobovich J, Rabinowicz R, et al. Syndromes predisposing to leukemia are a major cause of inherited cytopenias in children. Haematologica. 2022;107(9):2081–2095. PubMed PMC

Turro E, Astle WJ, Megy K, Graf S, Greene D, Shamardina O, et al. Whole‐genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583(7814):96–102. PubMed PMC

Uchiyama Y, Yanagisawa K, Kunishima S, Shiina M, Ogawa Y, Nakashima M, et al. A novel CYCS mutation in the α‐helix of the CYCS C‐terminal domain causes non‐syndromic thrombocytopenia. Clin Genet. 2018;94(6):548–553. PubMed

Marzollo A, Zampieri S, Barozzi S, Yousaf MA, Quartararo J, De Rocco D, et al. Thrombocytopenia 4 (THC4): six novel families with mutations of the cytochrome c gene. Br J Haematol. 2024;205(1):306–315. PubMed

Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell‐free extracts: requirement for dATP and cytochrome c. Cell. 1996;86(1):147–157. PubMed

De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, et al. Platelet formation is the consequence of caspase activation within megakaryocytes. Blood. 2002;100(4):1310–1317. PubMed

Clarke MCH, Savill J, Jones DB, Noble BS, Brown SB. Compartmentalized megakaryocyte death generates functional platelets committed to caspase‐independent death. J Cell Biol. 2003;160(4):577–587. PubMed PMC

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier‐Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. PubMed PMC

Rajagopal BS, Edzuma AN, Hough MA, Blundell KL, Kagan VE, Kapralov AA, et al. The hydrogen‐peroxide‐induced radical behaviour in human cytochrome c‐phospholipid complexes: implications for the enhanced pro‐apoptotic activity of the G41S mutant. Biochem J. 2013;456(3):441–452. PubMed

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph [Internet]. 1996;14(1):33–38. Available from: https://www.tapbiosystems.com/tap/products/index.htm PubMed

Karsisiotis AI, Deacon OM, Wilson MT, MacDonald C, Blumenschein TMA, Moore GR, et al. Increased dynamics in the 40‐57 Ω‐loop of the G41S variant of human cytochrome c promote its pro‐apoptotic conformation. Sci Rep. 2016;6(April):1–12. PubMed PMC

Wrzyszcz A, Urbaniak J, Sapa A, Woźniak M. An efficient method for isolation of representative and contamination‐free population of blood platelets for proteomic studies. Platelets. 2017;28(1):43–53. PubMed

R Core Team . R: a language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2021. Available from: https://www.r‐project.org

Banci L, Bertini I, Rosato A, Varani G. Mitochondrial cytochromes c: a comparative analysis. J Biol Inorg Chem. 1999;4(6):824–837. PubMed

Ong L, McDonald KO, Ledgerwood EC. Differentiation and cell density upregulate cytochrome c levels in megakaryoblastic cell lines: implications for analysis of CYCS‐associated thrombocytopenia. PLoS One. 2017;12(12):1–12. 10.1371/journal.pone.0190433 PubMed DOI PMC

Fetrow JS. Omega loops: nonregular secondary structures significant in protein function and stability. FASEB J. 1995;9(9):708–717. PubMed

Zauli G, Vitale M, Falcieri E, Gibellini D, Bassini A, Celeghini C, et al. In vitro senescence and apoptotic cell death of human megakaryocytes. Blood. 1997;90(6):2234–2243. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...