• This record comes from PubMed

OMIP-106: A 30-color panel for analysis of check-point inhibitory networks in the bone marrow of acute myeloid leukemia patients

. 2024 Oct ; 105 (10) : 729-736. [epub] 20240827

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/16_025/0007428 European Regional Development Fund and the state budget of the Czech Republic, project AIIHHP
IN 00023736 Ministry of Health of the Czech Republic; MH CZ - DRO (Institute of Hematology and Blood Transfusion - IHBT)

Acute myeloid leukemia (AML) is the most common form of acute leukemia diagnosed in adults. Despite advances in medical care, the treatment of AML still faces many challenges, such as treatment-related toxicities, that limit the use of high-intensity chemotherapy, especially in elderly patients. Currently, various immunotherapeutic approaches, that is, CAR-T cells, BiTEs, and immune checkpoint inhibitors, are being tested in clinical trials to prolong remission and improve the overall survival of AML patients. However, early reports show only limited benefits of these interventions and only in a subset of patients, showing the need for better patient stratification based on immunological markers. We have therefore developed and optimized a 30-color panel for evaluation of effector immune cell (NK cells, γδ T cells, NKT-like T cells, and classical T cells) infiltration into the bone marrow and analysis of their phenotype with regard to their differentiation, expression of inhibitory (PD-1, TIGIT, Tim3, NKG2A) and activating receptors (DNAM-1, NKG2D). We also evaluate the immune evasive phenotype of CD33+ myeloid cells, CD34+CD38-, and CD34+CD38+ hematopoietic stem and progenitor cells by analyzing the expression of inhibitory ligands such as PD-L1, CD112, CD155, and CD200. Our panel can be a valuable tool for patient stratification in clinical trials and can also be used to broaden our understanding of check-point inhibitory networks in AML.

See more in PubMed

Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–447.

Visani G, Chiarucci M, Paolasini S, Loscocco F, Isidori A. Treatment options for acute myeloid leukemia patients aged <60 years. Front Oncol. 2022;12:897220.

de Leeuw DC, Ossenkoppele GJ, Janssen JJWM. Older patients with acute myeloid leukemia deserve individualized treatment. Curr Oncol Rep. 2022;24:1387–1400.

Greiner J, Götz M, Wais V. Increasing role of targeted immunotherapies in the treatment of AML. Int J Mol Sci. 2022;23:3304.

Allison M, Mathews J, Gilliland T, Mathew SO. Natural killer cell‐mediated immunotherapy for leukemia. Cancer. 2022;14:843.

Vishwasrao P, Li G, Boucher JC, Smith DL, Hui SK. Emerging CAR T cell strategies for the treatment of AML. Cancer. 2022;14:1241.

Ritchie DS, Neeson PJ, Khot A, Peinert S, Tai T, Tainton K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol Ther. 2013;21:2122–2129.

Uy GL, Aldoss I, Foster MC, Sayre PH, Wieduwilt MJ, Advani AS, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137:751–762.

Tambaro FP, Singh H, Jones E, Rytting M, Mahadeo KM, Thompson P, et al. Autologous CD33‐CAR‐T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia. 2021;35:3282–3286.

Koedam J, Wermke M, Ehninger A, Cartellieri M, Ehninger G. Chimeric antigen receptor T‐cell therapy in acute myeloid leukemia. Curr Opin Hematol. 2022;29:74–83.

Robert C. A decade of immune‐checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11:3801.

Korman AJ, Garrett‐Thomson SC, Lonberg N. The foundations of immune checkpoint blockade and the ipilimumab approval decennial. Nat Rev Drug Discov. 2022;21:509–528.

Zeidner JF, Vincent BG, Esparza S, Ivanova A, Moore DT, Foster MC, et al. Final clinical results of a phase II study of high dose cytarabine followed by pembrolizumab in relapsed/refractory AML. Blood. 2019;134:831.

Zeidan AM, Cavenagh J, Voso MT, Taussig D, Tormo M, Boss I, et al. Efficacy and safety of azacitidine (AZA) in combination with the anti‐PD‐L1 durvalumab (durva) for the front‐line treatment of older patients (pts) with acute myeloid leukemia (AML) who are unfit for intensive chemotherapy (IC) and pts with higher‐risk myelodysplastic syndromes (HR‐MDS): results from a large, international, randomized phase 2 study. Blood. 2019;134:829.

Ravandi F, Assi R, Daver N, Benton CB, Kadia T, Thompson PA, et al. Idarubicin, cytarabine, and nivolumab in patients with newly diagnosed acute myeloid leukaemia or high‐risk myelodysplastic syndrome: a single‐arm, phase 2 study. Lancet Haematol. 2019;6:e480–e488.

Daver N, Garcia‐Manero G, Basu S, Boddu PC, Alfayez M, Cortes JE, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open‐label. Phase II Study Cancer Discov. 2019;9:370–383.

Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, et al. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev. 2023;57:100991.

Grove CS, Vassiliou GS. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Model Mech. 2014;7:941–951.

Tettamanti S, Pievani A, Biondi A, Dotti G, Serafini M. Catch me if you can: how AML and its niche escape immunotherapy. Leukemia. 2022;36:13–22.

Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–2221.

Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022;140:1345–1377.

Kuželová K, Brodská B, Marková J, Petráčková M, Schetelig J, Ransdorfová Š, et al. NPM1 and DNMT3A mutations are associated with distinct blast immunophenotype in acute myeloid leukemia. Onco Targets Ther. 2022;11:2073050.

Sallman DA, McLemore AF, Aldrich AL, Komrokji RS, McGraw KL, Dhawan A, et al. TP53 mutations in myelodysplastic syndromes and secondary AML confer an immunosuppressive phenotype. Blood. 2020;136:2812–2823.

Lamble AJ, Kosaka Y, Laderas T, Maffit A, Kaempf A, Brady LK, et al. Reversible suppression of T cell function in the bone marrow microenvironment of acute myeloid leukemia. Proc Natl Acad Sci. 2020;117:14331–14341.

Ismail MM, Abdulateef NAB. Bone marrow T‐cell percentage: A novel prognostic indicator in acute myeloid leukemia. Int J Hematol. 2017;105:453–464.

Vadakekolathu J, Minden MD, Hood T, Church SE, Reeder S, Altmann H, et al. Immune landscapes predict chemotherapy resistance and immunotherapy response in acute myeloid leukemia. Sci Transl Med. 2020;12:eaaz0463.

Vadakekolathu J, Lai C, Reeder S, Church SE, Hood T, Lourdusamy A, et al. TP53 abnormalities correlate with immune infiltration and associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020;4:5011–5024.

Cruse JM, Lewis RE, Pierce S, Lam J, Tadros Y. Aberrant expression of CD7, CD56, and CD79a antigens in acute myeloid leukemias. Exp Mol Pathol. 2005;79:39–41.

Lewis RE, Cruse JM, Sanders CM, Webb RN, Suggs JL. Aberrant expression of T‐cell markers in acute myeloid leukemia. Exp Mol Pathol. 2007;83:462–463.

Ma G, Wang Y, Ahmed T, Zaslav A‐L, Hogan L, Avila C, et al. Anti‐CD19 chimeric antigen receptor targeting of CD19 +acute myeloid leukemia. Leukemia Res Rep. 2018;9:42–44.

Alegretti AP, Bittar CM, Bittencourt R, Piccoli AK, Schneider L, Silla LM, et al. The expression of CD56 antigen is associated with poor prognosis in patients with acute myeloid leukemia. Rev Bras Hematol Hemoter. 2011;33:202–206.

Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–1093.

Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut J‐A, et al. Human acute myeloid leukemia CD34+/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas‐induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities1. Cancer Res. 2000;60:4403–4411.

Zeijlemaker W, Grob T, Meijer R, Hanekamp D, Kelder A, Carbaat‐Ham JC, et al. CD34+CD38− leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia. 2019;33:1102–1112.

Long NA, Golla U, Sharma A, Claxton DF. Acute myeloid leukemia stem cells: origin, characteristics, and clinical implications. Stem Cell Rev Rep. 2022;18:1211–1226.

Taussig DC, Miraki‐Moud F, Anjos‐Afonso F, Pearce DJ, Allen K, Ridler C, et al. Anti‐CD38 antibody–mediated clearance of human repopulating cells masks the heterogeneity of leukemia‐initiating cells. Blood. 2008;112:568–575.

Buggins AGS, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NSB, et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF‐κB, c‐Myc, and pRb pathways. J Immunol. 2001;167:6021–6030.

Knaus HA, Berglund S, Hackl H, Blackford AL, Zeidner JF, Montiel‐Esparza R, et al. Signatures of CD8+ T cell dysfunction in AML patients and their reversibility with response to chemotherapy. JCI Insight. 2018;3(21).

Jia B, Zhao C, Rakszawski KL, Claxton DF, Ehmann WC, Rybka WB, et al. Eomes+T‐betlow CD8+ T cells are functionally impaired and are associated with poor clinical outcome in patients with acute myeloid leukemia. Cancer Res. 2019;79:1635–1645.

Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, Zhu L, et al. PD‐1hiTIM‐3+ T cells associate with and predict leukemia relapse in AML patients post allogeneic stem cell transplantation. Blood Cancer J. 2015;5:e330.

Kong Y, Zhu L, Schell TD, Zhang J, Claxton DF, Ehmann WC, et al. T‐cell immunoglobulin and ITIM domain (TIGIT) associates with CD8+ T‐cell exhaustion and poor clinical outcome in AML patients. Clin Cancer Res. 2016;22:3057–3066.

Shenghui Z, Yixiang H, Jianbo W, Kang Y, Laixi B, Yan Z, et al. Elevated frequencies of CD4+ CD25+ CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer. 2011;129:1373–1381.

Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225–1232.

Han Y, Dong Y, Yang Q, Xu W, Jiang S, Yu Z, et al. Acute myeloid leukemia cells express ICOS ligand to promote the expansion of regulatory T cells. Front Immunol. 2018;9:2227.

Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, et al. Leukemia‐induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia. Haematologica. 2014;99:836–847.

Hilpert J, Grosse‐Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D‐mediated NK cell responses. J Immunol. 2012;189:1360–1371.

Sanchez‐Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, et al. Decreased expression of DNAM‐1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol. 2012;90:109–115.

Liu G, Zhang Q, Yang J, Li X, Xian L, Li W, et al. Increased TIGIT expressing NK cells with dysfunctional phenotype in AML patients correlated with poor prognosis. Cancer Immunol Immunother. 2022;71:277–287.

Shirasuna K, Koelsch G, Seidel‐Dugan C, Salmeron A, Steiner P, Winston WM, et al. Characterization of ASP8374, a fully‐human, antagonistic anti‐TIGIT monoclonal antibody. Cancer Treatment Res Commun. 2021;28:100433.

Bou‐Tayeh B, Laletin V, Salem N, Just‐Landi S, Fares J, Leblanc R, et al. Chronic IL‐15 stimulation and impaired mTOR signaling and metabolism in natural killer cells during acute myeloid leukemia. Front Immunol. 2021;12:730970.

Monaco G, Chen H, Poidinger M, Chen J, De Magalhães JP, Larbi A. FlowAI: Automatic and interactive anomaly discerning tools for flow cytometry data. Bioinformatics. 2016;32:2473–2480.

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 2011;331:1565–1570.

Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A. 2009;106:17858–17863.

Brauneck F, Seubert E, Wellbrock J, Schulze Zur Wiesch J, Duan Y, Magnus T, et al. Combined blockade of TIGIT and CD39 or A2AR enhances NK‐92 cell‐mediated cytotoxicity in AML. Int J Mol Sci. 2021;22:12919.

Ho JM, Dobson SM, McLeod J, Jin L, Ng SWK, Mitchell A, et al. CD200 is a marker of LSC activity in acute myeloid leukemia. Blood. 2016;128:1705.

Rastogi N, Baker S, Man S, Uger RA, Wong M, Coles SJ, et al. Use of an anti‐CD200‐blocking antibody improves immune responses to AML in vitro and in vivo. Br J Haematol. 2021;193:155–159.

Herbrich S, Baran N, Cai T, Weng C, Aitken MJL, Post SM, et al. Overexpression of CD200 is a stem cell‐specific mechanism of immune evasion in AML. J Immunother Cancer. 2021;9:e002968.

Damiani D, Tiribelli M. CD200 in hematological malignancies: just a diagnostic tool or more? J Lab Precision Med. 2017;2(9).

Zhang L, Jin Y, Xia P, Lin J, Ma J, Li T, et al. Integrated analysis reveals distinct molecular, clinical, and immunological features of B7‐H3 in acute myeloid leukemia. Cancer Med. 2021;10:7831–7846.

Tyagi A, Ly S, El‐Dana F, Yuan B, Jaggupilli A, Grimm S, et al. Evidence supporting a role for the immune checkpoint protein B7‐H3 in NK cell‐mediated cytotoxicity against AML. Blood. 2022;139:2782–2796.

Walker LSK, Sansom DM. Confusing signals: recent progress in CTLA‐4 biology. Trends Immunol. 2015;36:63–70.

Zhang Q, Ma R, Chen H, Guo W, Li Z, Xu K, et al. CD86 is associated with immune infiltration and immunotherapy signatures in AML and promotes its progression. J Oncol. 2023;2023(1):e9988405.

Graf M, Reif S, Hecht K, Pelka‐Fleischer R, Kroell T, Pfister K, et al. High expression of costimulatory molecules correlates with low relapse‐free survival probability in acute myeloid leukemia (AML). Ann Hematol. 2005;84:287–297.

Kikushige Y, Miyamoto T, Yuda J, Jabbarzadeh‐Tabrizi S, Shima T, Takayanagi SI, et al. A TIM‐3/Gal‐9 autocrine stimulatory loop drives self‐renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell. 2015;17:341–352.

Park LM, Lannigan J, Jaimes MC. OMIP‐069: Forty‐color full Spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry A. 2020;97(10):1044–1051.

Wang S‐R, Zhong N, Zhang X‐M, Zhao Z‐B, Balderas R, Li L, et al. OMIP 071: a 31‐parameter flow cytometry panel for in‐depth immunophenotyping of human T‐cell subsets using surface markers. Cytometry A. 2021;99(3):273–277.

Nogimori T, Sugawara Y, Higashiguchi M, Murakami H, Akita H, Takahama S, et al. OMIP 078: A 31‐parameter panel for comprehensive immunophenotyping of multiple immune cells in human peripheral blood mononuclear cells. Cytometry A. 2021;99(9):893–898.

Vanikova S, Koladiya A, Musil J. OMIP‐080: 29‐color flow cytometry panel for comprehensive evaluation of NK and T cells reconstitution after hematopoietic stem cells transplantation. Cytometry A. 2022;101(1):21–26.

Healy ZR, Murdoch DM. OMIP‐036: Co‐inhibitory receptor (immune checkpoint) expression analysis in human T cell subsets. Cytometry A. 2016;89(10):889–892.

Nettey L, Giles AJ, Chattopadhyay PK. OMIP‐050: a 28‐color/30‐parameter fluorescence flow cytometry panel to enumerate and characterize cells expressing a wide array of immune checkpoint molecules. Cytometry A. 2018;93(11):1094–1096.

Frutoso M, Mair F, Prlic M. OMIP‐070: NKp46‐based 27‐color phenotyping to define natural killer cells isolated from human tumor tissues. Cytometry A. 2020;97(10):1052–1056.

Preijers FWMB, Huys E, Moshaver B. OMIP‐010: a new 10‐color monoclonal antibody panel for polychromatic immunophenotyping of small hematopoietic cell samples. Cytometry A. 2012;81A(6):453–455.

Petersen MA, Bill M, Rosenberg CA. OMIP 072: A 15‐color panel for immunophenotypic identification, quantification, and characterization of leukemic stem cells in children with acute myeloid leukemia. Cytometry A. 2021;99(4):382–387.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...