Advancements in Understanding the Hide-and-Seek Strategy of Hibernating Breast Cancer Cells and Their Implications in Oncology from a Broader Perspective: A Comprehensive Overview
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39194709
PubMed Central
PMC11352233
DOI
10.3390/cimb46080492
PII: cimb46080492
Knihovny.cz E-zdroje
- Klíčová slova
- G9a, biomolecular pathways, breast cancer dormancy, metastatic relapse, molecular targeting, therapeutic resistance,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Despite recent advancements in technology, breast cancer still poses a significant threat, often resulting in fatal consequences. While early detection and treatments have shown some promise, many breast cancer patients continue to struggle with the persistent fear of the disease returning. This fear is valid, as breast cancer cells can lay dormant for years before remerging, evading traditional treatments like a game of hide and seek. The biology of these dormant breast cancer cells presents a crucial yet poorly understood challenge in clinical settings. In this review, we aim to explore the mysterious world of dormant breast cancer cells and their significant impact on patient outcomes and prognosis. We shed light on the elusive role of the G9a enzyme and many other epigenetic factors in breast cancer recurrence, highlighting its potential as a target for eliminating dormant cancer cells and preventing disease relapse. Through this comprehensive review, we not only emphasise the urgency of unravelling the dynamics of dormant breast cancer cells to improve patient outcomes and advance personalised oncology but also provide a guide for fellow researchers. By clearly outlining the clinical and research gaps surrounding dormant breast cancer cells from a molecular perspective, we aim to inspire further exploration of this critical area, ultimately leading to improved patient care and treatment strategies.
Independent Researcher Uxbridge UB9 6JH UK
Space for Research Initiative Research Horizons London NW10 2PU UK
Zobrazit více v PubMed
Huang J., Chan P.S., Lok V., Chen X., Ding H., Jin Y., Yuan J., Lao X., Zheng Z.-J., Wong M.C. Global Incidence and Mortality of Breast Cancer: A Trend Analysis. Aging. 2021;13:5748–5803. doi: 10.18632/aging.202502. PubMed DOI PMC
Berrino F., Villarini A., Gargano G., Krogh V., Grioni S., Bellegotti M., Venturelli E., Raimondi M., Traina A., Zarcone M., et al. The Effect of Diet on Breast Cancer Recurrence: The DIANA-5 Randomized Trial. Clin. Cancer Res. 2024;30:965–974. doi: 10.1158/1078-0432.CCR-23-1615. PubMed DOI PMC
Roy M., Biswas J., Datta A. Breast Cancer: Epidemiology, Types, Diagnosis, and Treatment. In: Roy M., Biswas J., Datta A., editors. Genetics and Epigenetics of Breast Cancer. Springer Nature; Singapore: 2023. pp. 1–24.
Roheel A., Khan A., Anwar F., Akbar Z., Akhtar M.F., Imran Khan M., Sohail M.F., Ahmad R. Global Epidemiology of Breast Cancer Based on Risk Factors: A Systematic Review. Front. Oncol. 2023;13:1240098. doi: 10.3389/fonc.2023.1240098. PubMed DOI PMC
Duggan C., Trapani D., Ilbawi A.M., Fidarova E., Laversanne M., Curigliano G., Bray F., Anderson B.O. National Health System Characteristics, Breast Cancer Stage at Diagnosis, and Breast Cancer Mortality: A Population-Based Analysis. Lancet Oncol. 2021;22:1632–1642. doi: 10.1016/S1470-2045(21)00462-9. PubMed DOI
Sinha G., Ferrer A.I., Moore C.A., Naaldijk Y., Rameshwar P. Gap Junctions and Breast Cancer Dormancy. Trends Cancer. 2020;6:348–357. doi: 10.1016/j.trecan.2020.01.013. PubMed DOI
Blasco M.T., Espuny I., Gomis R.R. Ecology and Evolution of Dormant Metastasis. Trends Cancer. 2022;8:570–582. doi: 10.1016/j.trecan.2022.03.002. PubMed DOI
Rossari F., Zucchinetti C., Buda G., Orciuolo E. Tumor Dormancy as an Alternative Step in the Development of Chemoresistance and Metastasis-Clinical Implications. Cell. Oncol. 2020;43:155–176. doi: 10.1007/s13402-019-00467-7. PubMed DOI
Dalla E., Sreekumar A., Aguirre-Ghiso J.A., Chodosh L.A. Dormancy in Breast Cancer. Cold Spring Harb. Perspect. Med. 2023;13:a041331. doi: 10.1101/cshperspect.a041331. PubMed DOI PMC
Demicheli R., Abbattista A., Miceli R., Valagussa P., Bonadonna G. Time Distribution of the Recurrence Risk for Breast Cancer Patients Undergoing Mastectomy: Further Support about the Concept of Tumor Dormancy. Breast Cancer Res. Treat. 1996;41:177–185. doi: 10.1007/BF01807163. PubMed DOI
Parker A.L., Cox T.R. The Role of the ECM in Lung Cancer Dormancy and Outgrowth. Front. Oncol. 2020;10:567139. doi: 10.3389/fonc.2020.01766. PubMed DOI PMC
Balayan V., Guddati A.K. Tumor Dormancy: Biologic and Therapeutic Implications. World J. Oncol. 2022;13:8–19. doi: 10.14740/wjon1419. PubMed DOI PMC
Rabinovsky R., Uhr J.W., Vitetta E.S., Yefenof E. Advances in Cancer Research. Volume 97. Academic Press; Cambridge, MA, USA: 2007. Cancer Dormancy: Lessons from a B Cell Lymphoma and Adenocarcinoma of the Prostate; pp. 189–202. PubMed
Werner S., Heidrich I., Pantel K. Clinical Management and Biology of Tumor Dormancy in Breast Cancer. Semin. Cancer Biol. 2022;78:49–62. doi: 10.1016/j.semcancer.2021.02.001. PubMed DOI
Ring A., Spataro M., Wicki A., Aceto N. Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer. Front. Cell Dev. Biol. 2022;10:929893. doi: 10.3389/fcell.2022.929893. PubMed DOI PMC
Aguirre-Ghiso J.A. Models, Mechanisms and Clinical Evidence for Cancer Dormancy. Nat. Rev. Cancer. 2007;7:834–846. doi: 10.1038/nrc2256. PubMed DOI PMC
Ramamoorthi G., Kodumudi K., Gallen C., Zachariah N.N., Basu A., Albert G., Beyer A., Snyder C., Wiener D., Costa R.L.B., et al. Disseminated Cancer Cells in Breast Cancer: Mechanism of Dissemination and Dormancy and Emerging Insights on Therapeutic Opportunities. Semin. Cancer Biol. 2022;78:78–89. doi: 10.1016/j.semcancer.2021.02.004. PubMed DOI
Sosa M.S., Bragado P., Aguirre-Ghiso J.A. Mechanisms of Disseminated Cancer Cell Dormancy: An Awakening Field. Nat. Rev. Cancer. 2014;14:611–622. doi: 10.1038/nrc3793. PubMed DOI PMC
Townson J.L., Chambers A.F. Dormancy of Solitary Metastatic Cells. Cell Cycle. 2006;5:1744–1750. doi: 10.4161/cc.5.16.2864. PubMed DOI
Weston W.A., Barr A.R. A Cell Cycle Centric View of Tumour Dormancy. Br. J. Cancer. 2023;129:1535–1545. doi: 10.1038/s41416-023-02401-z. PubMed DOI PMC
Richbourg N.R., Irakoze N., Kim H., Peyton S.R. Outlook and Opportunities for Engineered Environments of Breast Cancer Dormancy. Sci. Adv. 2024;10:eadl0165. doi: 10.1126/sciadv.adl0165. PubMed DOI PMC
Ranganathan A.C., Adam A.P., Aguirre-Ghiso J.A. Opposing Roles of Mitogenic and Stress Signaling Pathways in the Induction of Cancer Dormancy. Cell Cycle. 2006;5:1799–1807. doi: 10.4161/cc.5.16.3109. PubMed DOI PMC
Naumov G.N., MacDonald I.C., Weinmeister P.M., Kerkvliet N., Nadkarni K.V., Wilson S.M., Morris V.L., Groom A.C., Chambers A.F. Persistence of Solitary Mammary Carcinoma Cells in a Secondary Site: A Possible Contributor to Dormancy1. Cancer Res. 2002;62:2162–2168. PubMed
Bhojani M.S., Ross B.D., Rehemtulla A. TRAIL and Anti-Tumor Responses. Cancer Biol. Ther. 2003;2:70–77. doi: 10.4161/cbt.205. PubMed DOI
Phipps L.E., Hino S., Muschel R.J. Targeting Cell Spreading: A Method of Sensitizing Metastatic Tumor Cells to TRAIL-Induced Apoptosis. Mol. Cancer Res. 2011;9:249–258. doi: 10.1158/1541-7786.MCR-11-0021. PubMed DOI
Fisher J.L., Thomas-Mudge R.J., Elliott J., Hards D.K., Sims N.A., Slavin J., Martin T.J., Gillespie M.T. Osteoprotegerin Overexpression by Breast Cancer Cells Enhances Orthotopic and Osseous Tumor Growth and Contrasts with That Delivered Therapeutically. Cancer Res. 2006;66:3620–3628. doi: 10.1158/0008-5472.CAN-05-3119. PubMed DOI
Neville-Webbe H.L., Cross N.A., Eaton C.L., Nyambo R., Evans C.A., Coleman R.E., Holen I. Osteoprotegerin (OPG) Produced by Bone Marrow Stromal Cells Protects Breast Cancer Cells from TRAIL-Induced Apoptosis. Breast Cancer Res. Treat. 2004;86:271–282. doi: 10.1023/B:BREA.0000036900.48763.b3. PubMed DOI
Maroun C.R., Rowlands T. The Met Receptor Tyrosine Kinase: A Key Player in Oncogenesis and Drug Resistance. Pharmacol. Ther. 2014;142:316–338. doi: 10.1016/j.pharmthera.2013.12.014. PubMed DOI
Zhang X.H.-F., Wang Q., Gerald W., Hudis C.A., Norton L., Smid M., Foekens J.A., Massagué J. Latent Bone Metastasis in Breast Cancer Tied to Src-Dependent Survival Signals. Cancer Cell. 2009;16:67–78. doi: 10.1016/j.ccr.2009.05.017. PubMed DOI PMC
Heim S., Teixeira M.R., Dietrich C.U., Pandis N. Cytogenetic Polyclonality in Tumors of the Breast. Cancer Genet. Cytogenet. 1997;95:16–19. doi: 10.1016/S0165-4608(96)00322-6. PubMed DOI
Klein C.A., Blankenstein T.J., Schmidt-Kittler O., Petronio M., Polzer B., Stoecklein N.H., Riethmüller G. Genetic Heterogeneity of Single Disseminated Tumour Cells in Minimal Residual Cancer. Lancet. 2002;360:683–689. doi: 10.1016/S0140-6736(02)09838-0. PubMed DOI
Zhang Y., Che G. Development of the Relationship between Angiogenesis and Tumor Dormancy. Chin. J. Clin. Oncol. 2007;4:277–281. doi: 10.1007/s11805-007-0278-2. DOI
Indraccolo S., Stievano L., Minuzzo S., Tosello V., Esposito G., Piovan E., Zamarchi R., Chieco-Bianchi L., Amadori A. Interruption of Tumor Dormancy by a Transient Angiogenic Burst within the Tumor Microenvironment. Proc. Natl. Acad. Sci. USA. 2006;103:4216–4221. doi: 10.1073/pnas.0506200103. PubMed DOI PMC
Demicheli R., Retsky M.W., Hrushesky W.J., Baum M. Tumor Dormancy and Surgery-Driven Interruption of Dormancy in Breast Cancer: Learning from Failures. Nat. Rev. Clin. Oncol. 2007;4:699–710. doi: 10.1038/ncponc0999. PubMed DOI
Hussein O., Komarova S.V. Breast Cancer at Bone Metastatic Sites: Recent Discoveries and Treatment Targets. J. Cell Commun. Signal. 2011;5:85–99. doi: 10.1007/s12079-011-0117-3. PubMed DOI PMC
Young S.A.E., Heller A.-D., Garske D.S., Rummler M., Qian V., Ellinghaus A., Duda G.N., Willie B.M., Grüneboom A., Cipitria A. From Breast Cancer Cell Homing to the Onset of Early Bone Metastasis: The Role of Bone (Re)Modeling in Early Lesion Formation. Sci. Adv. 2024;10:eadj0975. doi: 10.1126/sciadv.adj0975. PubMed DOI PMC
Wang Y., Xu Z., Wu K.-L., Yu L., Wang C., Ding H., Gao Y., Sun H., Wu Y.-H., Xia M., et al. Siglec-15/Sialic Acid Axis as a Central Glyco-Immune Checkpoint in Breast Cancer Bone Metastasis. Proc. Natl. Acad. Sci. USA. 2024;121:e2312929121. doi: 10.1073/pnas.2312929121. PubMed DOI PMC
Barkan D., Kleinman H., Simmons J.L., Asmussen H., Kamaraju A.K., Hoenorhoff M.J., Liu Z., Costes S.V., Cho E.H., Lockett S., et al. Inhibition of Metastatic Outgrowth from Single Dormant Tumor Cells by Targeting the Cytoskeleton. Cancer Res. 2008;68:6241–6250. doi: 10.1158/0008-5472.CAN-07-6849. PubMed DOI PMC
Adair T.H., Montani J.-P. Angiogenesis. Morgan & Claypool Life Sciences; San Rafael, CA, USA: 2010. Overview of Angiogenesis. PubMed
Folkman J. Role of Angiogenesis in Tumor Growth and Metastasis. Semin. Oncol. 2002;29:15–18. doi: 10.1016/S0093-7754(02)70065-1. PubMed DOI
Saaristo A., Karpanen T., Alitalo K. Mechanisms of Angiogenesis and Their Use in the Inhibition of Tumor Growth and Metastasis. Oncogene. 2000;19:6122–6129. doi: 10.1038/sj.onc.1203969. PubMed DOI
Rak J.W., St Croix B.D., Kerbel R.S. Consequences of Angiogenesis for Tumor Progression, Metastasis and Cancer Therapy. Anti-Cancer Drugs. 1995;6:3. doi: 10.1097/00001813-199502000-00001. PubMed DOI
Folkman J. Tumor Angiogenesis: A Possible Control Point in Tumor Growth. Ann. Intern. Med. 1975;82:96–100. doi: 10.7326/0003-4819-82-1-96. PubMed DOI
Folkman J. Angiogenesis and Apoptosis. Semin. Cancer Biol. 2003;13:159–167. doi: 10.1016/S1044-579X(02)00133-5. PubMed DOI
Naumov G.N., Bender E., Zurakowski D., Kang S.-Y., Sampson D., Flynn E., Watnick R.S., Straume O., Akslen L.A., Folkman J., et al. A Model of Human Tumor Dormancy: An Angiogenic Switch from the Nonangiogenic Phenotype. JNCI J. Natl. Cancer Inst. 2006;98:316–325. doi: 10.1093/jnci/djj068. PubMed DOI
Gao F., Li X., Xu K., Wang R., Guan X. C-MYC Mediates the Crosstalk between Breast Cancer Cells and Tumor Microenvironment. Cell Commun. Signal. 2023;21:28. doi: 10.1186/s12964-023-01043-1. PubMed DOI PMC
Zangouei A.S., Zangoue M., Taghehchian N., Zangooie A., Reza Rahimi H., Saburi E., Sadat Alavi M., Moghbeli M. Cell Cycle Related Long Non-Coding RNAs as the Critical Regulators of Breast Cancer Progression and Metastasis. Biol. Res. 2023;56:1. doi: 10.1186/s40659-022-00411-4. PubMed DOI PMC
Marvalim C., Datta A., Lee S.C. Role of P53 in Breast Cancer Progression: An Insight into P53 Targeted Therapy. Theranostics. 2023;13:1421–1442. doi: 10.7150/thno.81847. PubMed DOI PMC
Bertram J.S. The Molecular Biology of Cancer. Mol. Asp. Med. 2000;21:167–223. doi: 10.1016/S0098-2997(00)00007-8. PubMed DOI
Weinberg R.A., Weinberg R.A. The Biology of Cancer. W.W. Norton & Company; New York, NY, USA: 2013.
Crespi B., Summers K. Evolutionary Biology of Cancer. Trends Ecol. Evol. 2005;20:545–552. doi: 10.1016/j.tree.2005.07.007. PubMed DOI
Eroles P., Bosch A., Alejandro Pérez-Fidalgo J., Lluch A. Molecular Biology in Breast Cancer: Intrinsic Subtypes and Signaling Pathways. Cancer Treat. Rev. 2012;38:698–707. doi: 10.1016/j.ctrv.2011.11.005. PubMed DOI
Nolan E., Lindeman G.J., Visvader J.E. Deciphering Breast Cancer: From Biology to the Clinic. Cell. 2023;186:1708–1728. doi: 10.1016/j.cell.2023.01.040. PubMed DOI
MacKie R.M., Reid R., Junor B. Fatal Melanoma Transferred in a Donated Kidney 16 Years after Melanoma Surgery. N. Engl. J. Med. 2003;348:567–568. doi: 10.1056/NEJM200302063480620. PubMed DOI
Suranyi M.G., Hogan P.G., Falk M.C., Axelsen R.A., Rigby R., Hawley C., Petrie J. ADVANCED DONOR-ORIGIN MELANOMA IN A RENAL TRANSPLANT RECIPIENT: Immunotherapy, Cure, and Retransplantation. Transplantation. 1998;66:655. doi: 10.1097/00007890-199809150-00020. PubMed DOI
Fattouh K., Ducroux E., Decullier E., Kanitakis J., Morelon E., Boissonnat P., Sebbag L., Jullien D., Euvrard S. Increasing Incidence of Melanoma after Solid Organ Transplantation: A Retrospective Epidemiological Study. Transpl. Int. 2017;30:1172–1180. doi: 10.1111/tri.13011. PubMed DOI
Granata S., Tessari G., Stallone G., Zaza G. Skin Cancer in Solid Organ Transplant Recipients: Still an Open Problem. Front. Med. 2023;10:1189680. doi: 10.3389/fmed.2023.1189680. PubMed DOI PMC
Rosales B.M., Hedley J., De La Mata N., Cavazzoni E., Vajdic C.M., Thompson J.F., Kelly P.J., Wyburn K., Webster A.C. Transmission and Non-Transmission of Melanoma from Deceased Solid Organ Donors to Transplant Recipients: Risks and Missed Opportunities. Transplantation. 2024;108:1623–1631. doi: 10.1097/TP.0000000000004961. PubMed DOI
Wenande E., Togsverd-Bo K., Hastrup A., Lei U., Philipsen P.A., Haedersdal M. Skin Cancer Development Is Strongly Associated with Actinic Keratosis in Solid Organ Transplant Recipients: A Danish Cohort Study. Dermatology. 2023;239:393–402. doi: 10.1159/000529369. PubMed DOI
Kulbat A., Richter K., Krzysztofik M., Batko K., Karwańska A., Kołodziej-Rzepa M., Wojewoda T., Wysocki W.M. Melanoma Incidence in 17,252 Organ Transplant Recipients in Poland in 2010–2022. Nowotw. J. Oncol. 2024;74:173–179. doi: 10.5603/njo.99186. DOI
Das U., Banik S., Nadumane S.S., Chakrabarti S., Gopal D., Kabekkodu S.P., Srisungsitthisunti P., Mazumder N., Biswas R. Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics. 2023;15:280. doi: 10.3390/pharmaceutics15010280. PubMed DOI PMC
Vishnoi M., Peddibhotla S., Yin W., Scamardo A.T., George G.C., Hong D.S., Marchetti D. The Isolation and Characterization of CTC Subsets Related to Breast Cancer Dormancy. Sci. Rep. 2015;5:17533. doi: 10.1038/srep17533. PubMed DOI PMC
Truskowski K., Amend S.R., Pienta K.J. Dormant Cancer Cells: Programmed Quiescence, Senescence, or Both? Cancer Metastasis Rev. 2023;42:37–47. doi: 10.1007/s10555-022-10073-z. PubMed DOI PMC
Nasr M.M., Lynch C.C. How Circulating Tumor Cluster Biology Contributes to the Metastatic Cascade: From Invasion to Dissemination and Dormancy. Cancer Metastasis Rev. 2023;42:1133–1146. doi: 10.1007/s10555-023-10124-z. PubMed DOI PMC
Min H.-Y., Lee H.-Y. Cellular Dormancy in Cancer: Mechanisms and Potential Targeting Strategies. Cancer Res. Treat. 2023;55:720–736. doi: 10.4143/crt.2023.468. PubMed DOI PMC
Wu S., Zhao S., Cui D., Xie J. Advances in the Biology, Detection Techniques, and Clinical Applications of Circulating Tumor Cells. J. Oncol. 2022;2022:7149686. doi: 10.1155/2022/7149686. PubMed DOI PMC
Baker B.M., Chen C.S. Deconstructing the Third Dimension–How 3D Culture Microenvironments Alter Cellular Cues. J. Cell Sci. 2012;125:3015–3024. doi: 10.1242/jcs.079509. PubMed DOI PMC
Rijal G., Li W. A Versatile 3D Tissue Matrix Scaffold System for Tumor Modeling and Drug Screening. Sci. Adv. 2017;3:e1700764. doi: 10.1126/sciadv.1700764. PubMed DOI PMC
Ghajar C.M., Peinado H., Mori H., Matei I.R., Evason K.J., Brazier H., Almeida D., Koller A., Hajjar K.A., Stainier D.Y.R., et al. The Perivascular Niche Regulates Breast Tumour Dormancy. Nat. Cell Biol. 2013;15:807–817. doi: 10.1038/ncb2767. PubMed DOI PMC
Ren Q., Khoo W.H., Corr A.P., Phan T.G., Croucher P.I., Stewart S.A. Gene Expression Predicts Dormant Metastatic Breast Cancer Cell Phenotype. Breast Cancer Res. 2022;24:10. doi: 10.1186/s13058-022-01503-5. PubMed DOI PMC
Patel A.P., Tirosh I., Trombetta J.J., Shalek A.K., Gillespie S.M., Wakimoto H., Cahill D.P., Nahed B.V., Curry W.T., Martuza R.L., et al. Single-Cell RNA-Seq Highlights Intratumoral Heterogeneity in Primary Glioblastoma. Science. 2014;344:1396–1401. doi: 10.1126/science.1254257. PubMed DOI PMC
Navin N., Kendall J., Troge J., Andrews P., Rodgers L., McIndoo J., Cook K., Stepansky A., Levy D., Esposito D., et al. Tumour Evolution Inferred by Single-Cell Sequencing. Nature. 2011;472:90–94. doi: 10.1038/nature09807. PubMed DOI PMC
Zhang Y., Wang D., Peng M., Tang L., Ouyang J., Xiong F., Guo C., Tang Y., Zhou Y., Liao Q., et al. Single-cell RNA Sequencing in Cancer Research. J. Exp. Clin. Cancer Res. 2021;40:81. doi: 10.1186/s13046-021-01874-1. PubMed DOI PMC
Wang Y., Waters J., Leung M.L., Unruh A., Roh W., Shi X., Chen K., Scheet P., Vattathil S., Liang H., et al. Clonal Evolution in Breast Cancer Revealed by Single Nucleus Genome Sequencing. Nature. 2014;512:155–160. doi: 10.1038/nature13600. PubMed DOI PMC
Kedrin D., Gligorijevic B., Wyckoff J., Verkhusha V.V., Condeelis J., Segall J.E., van Rheenen J. Intravital Imaging of Metastatic Behavior through a Mammary Imaging Window. Nat. Methods. 2008;5:1019–1021. doi: 10.1038/nmeth.1269. PubMed DOI PMC
Ellenbroek S.I.J., van Rheenen J. Imaging Hallmarks of Cancer in Living Mice. Nat. Rev. Cancer. 2014;14:406–418. doi: 10.1038/nrc3742. PubMed DOI
Talukdar S., Bhoopathi P., Emdad L., Das S., Sarkar D., Fisher P.B. Chapter Two-Dormancy and Cancer Stem Cells: An Enigma for Cancer Therapeutic Targeting. In: Civin C.I., Kingsbury T.J., Kim M., Fisher P.B., editors. Advances in Cancer Research. Volume 141. Academic Press; Cambridge, MA, USA: 2019. pp. 43–84. Cancer Stem Cells. PubMed
Aguirre-Ghiso J.A. Translating the Science of Cancer Dormancy to the Clinic. Cancer Res. 2021;81:4673–4675. doi: 10.1158/0008-5472.CAN-21-1407. PubMed DOI PMC
Phan T.G., Croucher P.I. The Dormant Cancer Cell Life Cycle. Nat. Rev. Cancer. 2020;20:398–411. doi: 10.1038/s41568-020-0263-0. PubMed DOI
Morales-Valencia J., David G. The Origins of Cancer Cell Dormancy. Curr. Opin. Genet. Dev. 2022;74:101914. doi: 10.1016/j.gde.2022.101914. PubMed DOI PMC
Risson E., Nobre A.R., Maguer-Satta V., Aguirre-Ghiso J.A. The Current Paradigm and Challenges Ahead for the Dormancy of Disseminated Tumor Cells. Nat. Cancer. 2020;1:672–680. doi: 10.1038/s43018-020-0088-5. PubMed DOI PMC
Ferrer A.I., Trinidad J.R., Sandiford O., Etchegaray J.-P., Rameshwar P. Epigenetic Dynamics in Cancer Stem Cell Dormancy. Cancer Metastasis Rev. 2020;39:721–738. doi: 10.1007/s10555-020-09882-x. PubMed DOI
Summers M.A., McDonald M.M., Croucher P.I. Cancer Cell Dormancy in Metastasis. Cold Spring Harb. Perspect. Med. 2020;10:a037556. doi: 10.1101/cshperspect.a037556. PubMed DOI PMC
Rack B.K., Schindlbeck C., Andergassen U., Schneeweiss A., Zwingers T., Lichtenegger W., Beckmann M., Sommer H.L., Pantel K., Janni W., et al. Use of Circulating Tumor Cells (CTC) in Peripheral Blood of Breast Cancer Patients before and after Adjuvant Chemotherapy to Predict Risk for Relapse: The SUCCESS Trial. J. Clin. Oncol. 2010;28:1003. doi: 10.1200/jco.2010.28.15_suppl.1003. DOI
Becker S., Solomayer E., Becker-Pergola G., Wallwiener D., Fehm T. Primary Systemic Therapy Does Not Eradicate Disseminated Tumor Cells in Breast Cancer Patients. Breast Cancer Res. Treat. 2007;106:239–243. doi: 10.1007/s10549-006-9484-5. PubMed DOI
Damen M.P.F., van Rheenen J., Scheele C.L.G.J. Targeting Dormant Tumor Cells to Prevent Cancer Recurrence. FEBS J. 2021;288:6286–6303. doi: 10.1111/febs.15626. PubMed DOI
Sauer S., Reed D.R., Ihnat M., Hurst R.E., Warshawsky D., Barkan D. Innovative Approaches in the Battle Against Cancer Recurrence: Novel Strategies to Combat Dormant Disseminated Tumor Cells. Front. Oncol. 2021;11:659963. doi: 10.3389/fonc.2021.659963. PubMed DOI PMC
Francescangeli F., De Angelis M.L., Rossi R., Cuccu A., Giuliani A., De Maria R., Zeuner A. Dormancy, Stemness, and Therapy Resistance: Interconnected Players in Cancer Evolution. Cancer Metastasis Rev. 2023;42:197–215. doi: 10.1007/s10555-023-10092-4. PubMed DOI PMC
Triana-Martínez F., Loza M.I., Domínguez E. Beyond Tumor Suppression: Senescence in Cancer Stemness and Tumor Dormancy. Cells. 2020;9:346. doi: 10.3390/cells9020346. PubMed DOI PMC
Sistigu A., Musella M., Galassi C., Vitale I., De Maria R. Tuning Cancer Fate: Tumor Microenvironment’s Role in Cancer Stem Cell Quiescence and Reawakening. Front. Immunol. 2020;11:2166. doi: 10.3389/fimmu.2020.02166. PubMed DOI PMC
Bakhshandeh S., Werner C., Fratzl P., Cipitria A. Microenvironment-Mediated Cancer Dormancy: Insights from Metastability Theory. Proc. Natl. Acad. Sci. USA. 2022;119:e2111046118. doi: 10.1073/pnas.2111046118. PubMed DOI PMC
Gu Y., Bui T., Muller W.J. Exploiting Mouse Models to Recapitulate Clinical Tumor Dormancy and Recurrence in Breast Cancer. Endocrinology. 2022;163:bqac055. doi: 10.1210/endocr/bqac055. PubMed DOI
Burstein H.J., Lacchetti C., Anderson H., Buchholz T.A., Davidson N.E., Gelmon K.A., Giordano S.H., Hudis C.A., Solky A.J., Stearns V., et al. Adjuvant Endocrine Therapy for Women with Hormone Receptor–Positive Breast Cancer: ASCO Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2019;37:423–438. doi: 10.1200/JCO.18.01160. PubMed DOI
Cardoso F., Kyriakides S., Ohno S., Penault-Llorca F., Poortmans P., Rubio I.T., Zackrisson S., Senkus E. Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019;30:1194–1220. doi: 10.1093/annonc/mdz173. PubMed DOI
Davies C., Pan H., Godwin J., Gray R., Arriagada R., Raina V., Abraham M., Alencar V.H.M., Badran A., Bonfill X., et al. Long-Term Effects of Continuing Adjuvant Tamoxifen to 10 Years versus Stopping at 5 Years after Diagnosis of Oestrogen Receptor-Positive Breast Cancer: ATLAS, a Randomised Trial. Lancet. 2013;381:805–816. doi: 10.1016/S0140-6736(12)61963-1. PubMed DOI PMC
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Aromatase Inhibitors versus Tamoxifen in Early Breast Cancer: Patient-Level Meta-Analysis of the Randomised Trials. Lancet. 2015;386:1341–1352. doi: 10.1016/S0140-6736(15)61074-1. PubMed DOI
Kuźnik A., Październiok-Holewa A., Jewula P., Kuźnik N. Bisphosphonates—Much More than Only Drugs for Bone Diseases. Eur. J. Pharmacol. 2020;866:172773. doi: 10.1016/j.ejphar.2019.172773. PubMed DOI
Drake M.T., Clarke B.L., Khosla S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008;83:1032–1045. doi: 10.4065/83.9.1032. PubMed DOI PMC
Miller P.D., Watts N.B. Osteoporosis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2013. Bisphosphonates; pp. 123–143.
Center J.R., Lyles K.W., Bliuc D. Bisphosphonates and Lifespan. Bone. 2020;141:115566. doi: 10.1016/j.bone.2020.115566. PubMed DOI
Gralow J.R., Barlow W.E., Paterson A.H.G., M’iao J.L., Lew D.L., Stopeck A.T., Hayes D.F., Hershman D.L., Schubert M.M., Clemons M., et al. Phase III Randomized Trial of Bisphosphonates as Adjuvant Therapy in Breast Cancer: S0307. JNCI J. Natl. Cancer Inst. 2020;112:698–707. doi: 10.1093/jnci/djz215. PubMed DOI PMC
Gnant M., Pfeiler G., Steger G.G., Egle D., Greil R., Fitzal F., Wette V., Balic M., Haslbauer F., Melbinger-Zeinitzer E., et al. Adjuvant Denosumab in Postmenopausal Patients with Hormone Receptor-Positive Breast Cancer (ABCSG-18): Disease-Free Survival Results from a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019;20:339–351. doi: 10.1016/S1470-2045(18)30862-3. PubMed DOI
Kaiser T., Teufel I., Geiger K., Vater Y., Aicher W.K., Klein G., Fehm T. Bisphosphonates Modulate Vital Functions of Human Osteoblasts and Affect Their Interactions with Breast Cancer Cells. Breast Cancer Res. Treat. 2013;140:35–48. doi: 10.1007/s10549-013-2613-z. PubMed DOI
Bailey S., Ezratty C., Mhango G., Lin J.J. Clinical and Sociodemographic Risk Factors Associated with the Development of Second Primary Cancers among Postmenopausal Breast Cancer Survivors. Breast Cancer. 2023;30:215–225. doi: 10.1007/s12282-022-01411-8. PubMed DOI PMC
Holen I., Coleman R.E. Anti-Tumour Activity of Bisphosphonates in Preclinical Models of Breast Cancer. Breast Cancer Res. 2010;12:214. doi: 10.1186/bcr2769. PubMed DOI PMC
Clézardin P., Ebetino F.H., Fournier P.G.J. Bisphosphonates and Cancer-Induced Bone Disease: Beyond Their Antiresorptive Activity. Cancer Res. 2005;65:4971–4974. doi: 10.1158/0008-5472.CAN-05-0264. PubMed DOI
Bedard P.L., Body J.-J., Piccart-Gebhart M.J. Sowing the Soil for Cure? Results of the ABCSG-12 Trial Open a New Chapter in the Evolving Adjuvant Bisphosphonate Story in Early Breast Cancer. J. Clin. Oncol. 2009;27:4043–4046. doi: 10.1200/JCO.2008.21.4908. PubMed DOI
Wiemer A.J., Hohl R.J., Wiemer D.F. The Intermediate Enzymes of Isoprenoid Metabolism as Anticancer Targets. Anti-Cancer Agents Med. Chem. 2009;9:526–542. doi: 10.2174/187152009788451860. PubMed DOI
Stresing V., Fournier P.G., Bellahcène A., Benzaïd I., Mönkkönen H., Colombel M., Ebetino F.H., Castronovo V., Clézardin P. Nitrogen-Containing Bisphosphonates Can Inhibit Angiogenesis in Vivo without the Involvement of Farnesyl Pyrophosphate Synthase. Bone. 2011;48:259–266. doi: 10.1016/j.bone.2010.09.035. PubMed DOI
Benzaïd I., Mönkkönen H., Stresing V., Bonnelye E., Green J., Mönkkönen J., Touraine J.-L., Clézardin P. High Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Promote Vgamma9Vdelta2 T-Cell Chemotaxis and Cytotoxicity in Vivo. Cancer Res. 2011;71:4562–4572. doi: 10.1158/0008-5472.CAN-10-3862. PubMed DOI
Winter M.C., Holen I., Coleman R.E. Exploring the Anti-Tumour Activity of Bisphosphonates in Early Breast Cancer. Cancer Treat. Rev. 2008;34:453–475. doi: 10.1016/j.ctrv.2008.02.004. PubMed DOI
Gnant M., Clézardin P. Direct and Indirect Anticancer Activity of Bisphosphonates: A Brief Review of Published Literature. Cancer Treat. Rev. 2012;38:407–415. doi: 10.1016/j.ctrv.2011.09.003. PubMed DOI
Yang S.X. Bevacizumab and Breast Cancer: Current Therapeutic Progress and Future Perspectives. Expert Rev. Anticancer Ther. 2009;9:1715–1725. doi: 10.1586/era.09.153. PubMed DOI PMC
Zheng H., Wu L., Chen J., Na N., Lou G. Neoadjuvant Nivolumab plus Bevacizumab Therapy Improves the Prognosis of Triple-Negative Breast Cancer in Humanized Mouse Models. Breast Cancer. 2024;31:371–381. doi: 10.1007/s12282-024-01543-z. PubMed DOI
Hu Y., Chen P., Xiang F. Efficacy Evaluation of Bevacizumab Combined with Capecitabine in the Treatment of HER2-Negative Metastatic Breast Cancer: A Meta-Analysis. J. Oncol. 2023;2023:e8740221. doi: 10.1155/2023/8740221. PubMed DOI PMC
Yamamoto Y., Yamashiro H., Schneeweiss A., Müller V., Gluz O., Klare P., Aktas B., Magdolna D., Büdi L., Pikó B., et al. Factors Affecting Prognosis in Patients Treated with Bevacizumab plus Paclitaxel as First-Line Chemotherapy for HER2-Negative Metastatic Breast Cancer: An International Pooled Analysis of Individual Patient Data from Four Prospective Observational Studies. Breast Cancer. 2023;30:88–100. doi: 10.1007/s12282-022-01399-1. PubMed DOI PMC
Matsui K., Earashi M., Yoshikawa A., Fukushima W., Nozaki Z., Oyama K., Maeda K., Nakakura A., Morita S., Fujii T. Real-world Effect of Bevacizumab and Eribulin on Metastatic Breast Cancer Using a Propensity Score Matching Analysis. Mol. Clin. Oncol. 2023;18:12. doi: 10.3892/mco.2023.2608. PubMed DOI PMC
Mayer E.L., Tayob N., Ren S., Savoie J.J., Spigel D.R., Burris H.A., Ryan P.D., Harris L.N., Winer E.P., Burstein H.J. A Randomized Phase II Study of Metronomic Cyclophosphamide and Methotrexate (CM) with or without Bevacizumab in Patients with Advanced Breast Cancer. Breast Cancer Res. Treat. 2024;204:123–132. doi: 10.1007/s10549-023-07167-9. PubMed DOI
Miles D.W., Diéras V., Cortés J., Duenne A.-A., Yi J., O’Shaughnessy J. First-Line Bevacizumab in Combination with Chemotherapy for HER2-Negative Metastatic Breast Cancer: Pooled and Subgroup Analyses of Data from 2447 Patients. Ann. Oncol. 2013;24:2773–2780. doi: 10.1093/annonc/mdt276. PubMed DOI
Romond E.H., Perez E.A., Bryant J., Suman V.J., Geyer C.E., Jr., Davidson N.E., Tan-Chiu E., Martino S., Paik S., Kaufman P.A., et al. Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer. N. Engl. J. Med. 2005;353:1673–1684. doi: 10.1056/NEJMoa052122. PubMed DOI
Bradley R., Braybrooke J., Gray R., Hills R., Liu Z., Peto R., Davies L., Dodwell D., McGale P., Pan H., et al. Trastuzumab for Early-Stage, HER2-Positive Breast Cancer: A Meta-Analysis of 13 864 Women in Seven Randomised Trials. Lancet Oncol. 2021;22:1139–1150. doi: 10.1016/S1470-2045(21)00288-6. PubMed DOI PMC
von Minckwitz G., Huang C.-S., Mano M.S., Loibl S., Mamounas E.P., Untch M., Wolmark N., Rastogi P., Schneeweiss A., Redondo A., et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019;380:617–628. doi: 10.1056/NEJMoa1814017. PubMed DOI
Viani G.A., Afonso S.L., Stefano E.J., De Fendi L.I., Soares F.V. Adjuvant Trastuzumab in the Treatment of Her-2-Positive Early Breast Cancer: A Meta-Analysis of Published Randomized Trials. BMC Cancer. 2007;7:153. doi: 10.1186/1471-2407-7-153. PubMed DOI PMC
Ma R., Shi Y., Yan R., Yin S., Bu H., Huang J. Efficacy and Safety of Trastuzumab Deruxtecan in Treating Human Epidermal Growth Factor Receptor 2-Low/Positive Advanced Breast Cancer:A Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Oncol./Hematol. 2024;196:104305. doi: 10.1016/j.critrevonc.2024.104305. PubMed DOI
Falcón González A., Cruz Jurado J., Llabrés Valenti E., Urbano Cubero R., Álamo de la Gala M.C., Martínez Guisado M.A., Álvarez Ambite R., Rodríguez González C.J., Amérigo Góngora M., Rodríguez Pérez L., et al. Real-World Experience with Pertuzumab and Trastuzumab Combined with Chemotherapy in Neoadjuvant Treatment for Patients with Early-Stage HER2-Positive Breast Cancer: The NEOPERSUR Study. Clin. Transl. Oncol. 2024 doi: 10.1007/s12094-024-03440-5. PubMed DOI PMC
Huang L., Pang D., Yang H., Li W., Wang S., Cui S., Liao N., Wang Y., Wang C., Chang Y.-C., et al. Neoadjuvant–Adjuvant Pertuzumab in HER2-Positive Early Breast Cancer: Final Analysis of the Randomized Phase III PEONY Trial. Nat. Commun. 2024;15:2153. doi: 10.1038/s41467-024-45591-7. PubMed DOI PMC
Sharman Moser S., Apter L., Livnat I., Ginsburg R., Yarden A., Drori M., Drizon A., Chodick G., Siegelmann-Danieli N. Clinical Outcomes of Patients with HER2 Positive Metastatic Breast Cancer to the Brain, with First-Line Trastuzumab, Pertuzumab and Chemotherapy, in a Real-World Setting. Breast Cancer Targets Ther. 2024;16:105–116. doi: 10.2147/BCTT.S439158. PubMed DOI PMC
Slamon D.J., Godolphin W., Jones L.A., Holt J.A., Wong S.G., Keith D.E., Levin W.J., Stuart S.G., Udove J., Ullrich A., et al. Studies of the HER-2/Neu Proto-Oncogene in Human Breast and Ovarian Cancer. Science. 1989;244:707–712. doi: 10.1126/science.2470152. PubMed DOI
Krawczyk N., Banys M., Neubauer H., Solomayer E.-F., Gall C., Hahn M., Becker S., Bachmann R., Wallwiener D., Fehm T. HER2 Status on Persistent Disseminated Tumor Cells after Adjuvant Therapy May Differ from Initial HER2 Status on Primary Tumor. Anticancer Res. 2009;29:4019–4024. PubMed
Meng S., Tripathy D., Shete S., Ashfaq R., Haley B., Perkins S., Beitsch P., Khan A., Euhus D., Osborne C., et al. HER-2 Gene Amplification Can Be Acquired as Breast Cancer Progresses. Proc. Natl. Acad. Sci. USA. 2004;101:9393–9398. doi: 10.1073/pnas.0402993101. PubMed DOI PMC
Jueckstock J., Rack B., Schindlbeck C., Hofmann S., Zill B., Mylonas I., Blankenstein T., Janni W., Friese K. Treatment with Trastuzumab in Recurrence Free Patients with Early Breast Cancer and Persistent Disseminated Tumor Cells (DTC) in Bone Marrow. Cancer Res. 2009;69:3135. doi: 10.1158/0008-5472.SABCS-3135. DOI
Saxena M., van der Burg S.H., Melief C.J.M., Bhardwaj N. Therapeutic Cancer Vaccines. Nat. Rev. Cancer. 2021;21:360–378. doi: 10.1038/s41568-021-00346-0. PubMed DOI
Lin M.J., Svensson-Arvelund J., Lubitz G.S., Marabelle A., Melero I., Brown B.D., Brody J.D. Cancer Vaccines: The next Immunotherapy Frontier. Nat. Cancer. 2022;3:911–926. doi: 10.1038/s43018-022-00418-6. PubMed DOI
Vajari M.K., Sanaei M.-J., Salari S., Rezvani A., Ravari M.S., Bashash D. Breast Cancer Vaccination: Latest Advances with an Analytical Focus on Clinical Trials. Int. Immunopharmacol. 2023;123:110696. doi: 10.1016/j.intimp.2023.110696. PubMed DOI
Debien V., De Caluwé A., Wang X., Piccart-Gebhart M., Tuohy V.K., Romano E., Buisseret L. Immunotherapy in Breast Cancer: An Overview of Current Strategies and Perspectives. npj Breast Cancer. 2023;9:7. doi: 10.1038/s41523-023-00508-3. PubMed DOI PMC
Schlom J. Therapeutic Cancer Vaccines: Current Status and Moving Forward. JNCI J. Natl. Cancer Inst. 2012;104:599–613. doi: 10.1093/jnci/djs033. PubMed DOI PMC
Ubowski M.M., VanSice R., Marriott M., Yacobucci M.J., Chablani L. Amplifying Immune Responses: Microparticulate Vaccine Approach Against Breast Cancer. Breast Cancer Targets Ther. 2024;16:149–162. doi: 10.2147/BCTT.S441368. PubMed DOI PMC
Morse M.A., Crosby E.J., Force J., Osada T., Hobeika A.C., Hartman Z.C., Berglund P., Smith J., Lyerly H.K. Clinical Trials of Self-Replicating RNA-Based Cancer Vaccines. Cancer Gene Ther. 2023;30:803–811. doi: 10.1038/s41417-023-00587-1. PubMed DOI PMC
Disis M.L., Guthrie K.A., Liu Y., Coveler A.L., Higgins D.M., Childs J.S., Dang Y., Salazar L.G. Safety and Outcomes of a Plasmid DNA Vaccine Encoding the ERBB2 Intracellular Domain in Patients with Advanced-Stage ERBB2-Positive Breast Cancer: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol. 2023;9:71–78. doi: 10.1001/jamaoncol.2022.5143. PubMed DOI PMC
Ko B.K., Kawano K., Murray J.L., Disis M.L., Efferson C.L., Kuerer H.M., Peoples G.E., Ioannides C.G. Clinical Studies of Vaccines Targeting Breast Cancer1. Clin. Cancer Res. 2003;9:3222–3234. PubMed
Curigliano G., Spitaleri G., Pietri E., Rescigno M., de Braud F., Cardillo A., Munzone E., Rocca A., Bonizzi G., Brichard V., et al. Breast Cancer Vaccines: A Clinical Reality or Fairy Tale? Ann. Oncol. 2006;17:750–762. doi: 10.1093/annonc/mdj083. PubMed DOI
Smith I.E., Dowsett M. Aromatase Inhibitors in Breast Cancer. N. Engl. J. Med. 2003;348:2431–2442. doi: 10.1056/NEJMra023246. PubMed DOI
Cuzick J., Powles T., Veronesi U., Forbes J., Edwards R., Ashley S., Boyle P. Overview of the Main Outcomes in Breast-Cancer Prevention Trials. Lancet. 2003;361:296–300. doi: 10.1016/S0140-6736(03)12342-2. PubMed DOI
Howell A., Cuzick J., Baum M., Buzdar A., Dowsett M., Forbes J.F., Hoctin-Boes G., Houghton J., Locker G.Y., Tobias J.S., et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) Trial after Completion of 5 Years’ Adjuvant Treatment for Breast Cancer. Lancet. 2005;365:60–62. doi: 10.1016/S0140-6736(04)17666-6. PubMed DOI
Di Leo A., Jerusalem G., Petruzelka L., Torres R., Bondarenko I.N., Khasanov R., Verhoeven D., Pedrini J.L., Smirnova I., Lichinitser M.R., et al. Final Overall Survival: Fulvestrant 500 Mg vs 250 Mg in the Randomized CONFIRM Trial. J. Natl. Cancer Inst. 2014;106:djt337. doi: 10.1093/jnci/djt337. PubMed DOI PMC
Adams S., Loi S., Toppmeyer D., Cescon D.W., Laurentiis M.D., Nanda R., Winer E.P., Mukai H., Tamura K., Armstrong A., et al. Pembrolizumab Monotherapy for Previously Untreated, PD-L1-Positive, Metastatic Triple-Negative Breast Cancer: Cohort B of the Phase II KEYNOTE-086 Study. Ann. Oncol. 2019;30:405–411. doi: 10.1093/annonc/mdy518. PubMed DOI
Schmid P., Cortes J., Pusztai L., McArthur H., Kümmel S., Bergh J., Denkert C., Park Y.H., Hui R., Harbeck N., et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020;382:810–821. doi: 10.1056/NEJMoa1910549. PubMed DOI
Robson M., Im S.-A., Senkus E., Xu B., Domchek S.M., Masuda N., Delaloge S., Li W., Tung N., Armstrong A., et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017;377:523–533. doi: 10.1056/NEJMoa1706450. PubMed DOI
Litton J.K., Rugo H.S., Ettl J., Hurvitz S.A., Gonçalves A., Lee K.-H., Fehrenbacher L., Yerushalmi R., Mina L.A., Martin M., et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018;379:753–763. doi: 10.1056/NEJMoa1802905. PubMed DOI PMC
Hortobagyi G.N., Stemmer S.M., Burris H.A., Yap Y.-S., Sonke G.S., Paluch-Shimon S., Campone M., Blackwell K.L., André F., Winer E.P., et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N. Engl. J. Med. 2016;375:1738–1748. doi: 10.1056/NEJMoa1609709. PubMed DOI
Sledge G.W., Toi M., Neven P., Sohn J., Inoue K., Pivot X., Burdaeva O., Okera M., Masuda N., Kaufman P.A., et al. MONARCH 2: Abemaciclib in Combination with Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J. Clin. Oncol. 2017;35:2875–2884. doi: 10.1200/JCO.2017.73.7585. PubMed DOI
Turner N., Pearson A., Sharpe R., Lambros M., Geyer F., Lopez-Garcia M.A., Natrajan R., Marchio C., Iorns E., Mackay A., et al. FGFR1 Amplification Drives Endocrine Therapy Resistance and Is a Therapeutic Target in Breast Cancer. Cancer Res. 2010;70:2085–2094. doi: 10.1158/0008-5472.CAN-09-3746. PubMed DOI PMC
Jones P.A., Baylin S.B. The Epigenomics of Cancer. Cell. 2007;128:683–692. doi: 10.1016/j.cell.2007.01.029. PubMed DOI PMC
Stefansson O.A., Esteller M. Epigenetic Modifications in Breast Cancer and Their Role in Personalized Medicine. Am. J. Pathol. 2013;183:1052–1063. doi: 10.1016/j.ajpath.2013.04.033. PubMed DOI
Baylin S.B., Jones P.A. A Decade of Exploring the Cancer Epigenome—Biological and Translational Implications. Nat. Rev. Cancer. 2011;11:726–734. doi: 10.1038/nrc3130. PubMed DOI PMC
Toyota M., Issa J.-P.J. CpG Island Methylator Phenotypes in Aging and Cancer. Semin. Cancer Biol. 1999;9:349–357. doi: 10.1006/scbi.1999.0135. PubMed DOI
Bannister A.J., Kouzarides T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011;21:381–395. doi: 10.1038/cr.2011.22. PubMed DOI PMC
Schwaller J. Learning from Mouse Models of MLL Fusion Gene-Driven Acute Leukemia. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2020;1863:194550. doi: 10.1016/j.bbagrm.2020.194550. PubMed DOI
Dawson M.A., Kouzarides T. Cancer Epigenetics: From Mechanism to Therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI
Chi P., Allis C.D., Wang G.G. Covalent Histone Modifications—Miswritten, Misinterpreted and Mis-Erased in Human Cancers. Nat. Rev. Cancer. 2010;10:457–469. doi: 10.1038/nrc2876. PubMed DOI PMC
Clapier C.R., Cairns B.R. The Biology of Chromatin Remodeling Complexes. Annu. Rev. Biochem. 2009;78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223. PubMed DOI
Lusser A., Kadonaga J.T. Chromatin Remodeling by ATP-Dependent Molecular Machines. BioEssays. 2003;25:1192–1200. doi: 10.1002/bies.10359. PubMed DOI
Hargreaves D.C., Crabtree G.R. ATP-Dependent Chromatin Remodeling: Genetics, Genomics and Mechanisms. Cell Res. 2011;21:396–420. doi: 10.1038/cr.2011.32. PubMed DOI PMC
Wood L.D., Parsons D.W., Jones S., Lin J., Sjöblom T., Leary R.J., Shen D., Boca S.M., Barber T., Ptak J., et al. The Genomic Landscapes of Human Breast and Colorectal Cancers. Science. 2007;318:1108–1113. doi: 10.1126/science.1145720. PubMed DOI
Karim A.M., Eun Kwon J., Ali T., Jang J., Ullah I., Lee Y.-G., Park D.W., Park J., Jeang J.W., Kang S.C. Triple-Negative Breast Cancer: Epidemiology, Molecular Mechanisms, and Modern Vaccine-Based Treatment Strategies. Biochem. Pharmacol. 2023;212:115545. doi: 10.1016/j.bcp.2023.115545. PubMed DOI
Cavalli G., Heard E. Advances in Epigenetics Link Genetics to the Environment and Disease. Nature. 2019;571:489–499. doi: 10.1038/s41586-019-1411-0. PubMed DOI
Bouyahya A., El Hachlafi N., Aanniz T., Bourais I., Mechchate H., Benali T., Shariati M.A., Burkov P., Lorenzo J.M., Wilairatana P., et al. Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. Molecules. 2022;27:2568. doi: 10.3390/molecules27082568. PubMed DOI PMC
Yang T., Yang Y., Wang Y. Predictive Biomarkers and Potential Drug Combinations of Epi-Drugs in Cancer Therapy. Clin. Epigenet. 2021;13:113. doi: 10.1186/s13148-021-01098-2. PubMed DOI PMC
Rosano D., Sofyali E., Dhiman H., Ghirardi C., Ivanoiu D., Heide T., Vingiani A., Bertolotti A., Pruneri G., Canale E., et al. Long-Term Multimodal Recording Reveals Epigenetic Adaptation Routes in Dormant Breast Cancer Cells. Cancer Discov. 2024;14:866–889. doi: 10.1158/2159-8290.CD-23-1161. PubMed DOI PMC
Mabe N.W., Garcia N.M.G., Wolery S.E., Newcomb R., Meingasner R.C., Vilona B.A., Lupo R., Lin C.-C., Chi J.-T., Alvarez J.V. G9a Promotes Breast Cancer Recurrence through Repression of a Pro-Inflammatory Program. Cell Rep. 2020;33:108341. doi: 10.1016/j.celrep.2020.108341. PubMed DOI PMC
Poulard C., Noureddine L.M., Pruvost L., Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life. 2021;11:1082. doi: 10.3390/life11101082. PubMed DOI PMC
Eisenberg C.A., Eisenberg L.M. G9a and G9a-Like Histone Methyltransferases and Their Effect on Cell Phenotype, Embryonic Development, and Human Disease. In: Jurga S., Barciszewski J., editors. The DNA, RNA, and Histone Methylomes. Springer International Publishing; Cham, Switzerland: 2019. pp. 399–433.
Lavin D.P., Tiwari V.K. Unresolved Complexity in the Gene Regulatory Network Underlying EMT. Front. Oncol. 2020;10:554. doi: 10.3389/fonc.2020.00554. PubMed DOI PMC
Nagrath S., Sequist L.V., Maheswaran S., Bell D.W., Irimia D., Ulkus L., Smith M.R., Kwak E.L., Digumarthy S., Muzikansky A., et al. Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology. Nature. 2007;450:1235–1239. doi: 10.1038/nature06385. PubMed DOI PMC
Yu M., Bardia A., Wittner B.S., Stott S.L., Smas M.E., Ting D.T., Isakoff S.J., Ciciliano J.C., Wells M.N., Shah A.M., et al. Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science. 2013;339:580–584. doi: 10.1126/science.1228522. PubMed DOI PMC
Yu M., Stott S., Toner M., Maheswaran S., Haber D.A. Circulating Tumor Cells: Approaches to Isolation and Characterization. J. Cell Biol. 2011;192:373–382. doi: 10.1083/jcb.201010021. PubMed DOI PMC
Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W.M.M., et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766. PubMed DOI
Diaz L.A., Bardelli A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J. Clin. Oncol. 2014;32:579–586. doi: 10.1200/JCO.2012.45.2011. PubMed DOI PMC
Schwarzenbach H., Hoon D.S.B., Pantel K. Cell-Free Nucleic Acids as Biomarkers in Cancer Patients. Nat. Rev. Cancer. 2011;11:426–437. doi: 10.1038/nrc3066. PubMed DOI
Siravegna G., Marsoni S., Siena S., Bardelli A. Integrating Liquid Biopsies into the Management of Cancer. Nat. Rev. Clin. Oncol. 2017;14:531–548. doi: 10.1038/nrclinonc.2017.14. PubMed DOI
Heitzer E., Ulz P., Geigl J.B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clin. Chem. 2015;61:112–123. doi: 10.1373/clinchem.2014.222679. PubMed DOI
Sparano J.A., Gray R.J., Makower D.F., Pritchard K.I., Albain K.S., Hayes D.F., Geyer C.E., Dees E.C., Goetz M.P., Olson J.A., et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018;379:111–121. doi: 10.1056/NEJMoa1804710. PubMed DOI PMC
Paik S., Shak S., Tang G., Kim C., Baker J., Cronin M., Baehner F.L., Walker M.G., Watson D., Park T., et al. A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. N. Engl. J. Med. 2004;351:2817–2826. doi: 10.1056/NEJMoa041588. PubMed DOI
Blok E.J., van de Velde C.J., Smit V.T. 70-Gene Signature in Early-Stage Breast Cancer. N. Engl. J. Med. 2016;375:2199. doi: 10.1056/nejmc1612048. PubMed DOI
Wirapati P., Sotiriou C., Kunkel S., Farmer P., Pradervand S., Haibe-Kains B., Desmedt C., Ignatiadis M., Sengstag T., Schütz F., et al. Meta-Analysis of Gene Expression Profiles in Breast Cancer: Toward a Unified Understanding of Breast Cancer Subtyping and Prognosis Signatures. Breast Cancer Res. 2008;10:R65. doi: 10.1186/bcr2124. PubMed DOI PMC
Denkert C., Loibl S., Noske A., Roller M., Müller B.M., Komor M., Budczies J., Darb-Esfahani S., Kronenwett R., Hanusch C., et al. Tumor-Associated Lymphocytes as an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer. J. Clin. Oncol. 2010;28:105–113. doi: 10.1200/JCO.2009.23.7370. PubMed DOI
Schalper K.A., Velcheti V., Carvajal D., Wimberly H., Brown J., Pusztai L., Rimm D.L. In Situ Tumor PD-L1 mRNA Expression Is Associated with Increased TILs and Better Outcome in Breast Carcinomas. Clin Cancer Res. 2014;20:2773–2782. doi: 10.1158/1078-0432.CCR-13-2702. PubMed DOI
Loi S., Sirtaine N., Piette F., Salgado R., Viale G., Van Eenoo F., Rouas G., Francis P., Crown J.P.A., Hitre E., et al. Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin with Doxorubicin-Based Chemotherapy: BIG 02-98. J. Clin. Oncol. 2013;31:860–867. doi: 10.1200/JCO.2011.41.0902. PubMed DOI
Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., Diéras V., Hegg R., Im S.-A., Shaw Wright G., et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018;379:2108–2121. doi: 10.1056/NEJMoa1809615. PubMed DOI
Acheampong D.O. Bispecific Antibody (bsAb) Construct Formats and Their Application in Cancer Therapy. Protein Pept. Lett. 2019;26:479–493. doi: 10.2174/0929866526666190311163820. PubMed DOI
Farhangnia P., Ghomi S.M., Akbarpour M., Delbandi A.-A. Bispecific Antibodies Targeting CTLA-4: Game-Changer Troopers in Cancer Immunotherapy. Front. Immunol. 2023;14:1155778. doi: 10.3389/fimmu.2023.1155778. PubMed DOI PMC
Lan H.-R., Chen M., Yao S.-Y., Chen J.-X., Jin K.-T. Bispecific Antibodies Revolutionizing Breast Cancer Treatment: A Comprehensive Overview. Front. Immunol. 2023;14:1266450. doi: 10.3389/fimmu.2023.1266450. PubMed DOI PMC
Klein C., Brinkmann U., Reichert J.M., Kontermann R.E. The Present and Future of Bispecific Antibodies for Cancer Therapy. Nat. Rev. Drug Discov. 2024;23:301–319. doi: 10.1038/s41573-024-00896-6. PubMed DOI