Advancements in Understanding the Hide-and-Seek Strategy of Hibernating Breast Cancer Cells and Their Implications in Oncology from a Broader Perspective: A Comprehensive Overview

. 2024 Aug 01 ; 46 (8) : 8340-8367. [epub] 20240801

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39194709

Despite recent advancements in technology, breast cancer still poses a significant threat, often resulting in fatal consequences. While early detection and treatments have shown some promise, many breast cancer patients continue to struggle with the persistent fear of the disease returning. This fear is valid, as breast cancer cells can lay dormant for years before remerging, evading traditional treatments like a game of hide and seek. The biology of these dormant breast cancer cells presents a crucial yet poorly understood challenge in clinical settings. In this review, we aim to explore the mysterious world of dormant breast cancer cells and their significant impact on patient outcomes and prognosis. We shed light on the elusive role of the G9a enzyme and many other epigenetic factors in breast cancer recurrence, highlighting its potential as a target for eliminating dormant cancer cells and preventing disease relapse. Through this comprehensive review, we not only emphasise the urgency of unravelling the dynamics of dormant breast cancer cells to improve patient outcomes and advance personalised oncology but also provide a guide for fellow researchers. By clearly outlining the clinical and research gaps surrounding dormant breast cancer cells from a molecular perspective, we aim to inspire further exploration of this critical area, ultimately leading to improved patient care and treatment strategies.

Zobrazit více v PubMed

Huang J., Chan P.S., Lok V., Chen X., Ding H., Jin Y., Yuan J., Lao X., Zheng Z.-J., Wong M.C. Global Incidence and Mortality of Breast Cancer: A Trend Analysis. Aging. 2021;13:5748–5803. doi: 10.18632/aging.202502. PubMed DOI PMC

Berrino F., Villarini A., Gargano G., Krogh V., Grioni S., Bellegotti M., Venturelli E., Raimondi M., Traina A., Zarcone M., et al. The Effect of Diet on Breast Cancer Recurrence: The DIANA-5 Randomized Trial. Clin. Cancer Res. 2024;30:965–974. doi: 10.1158/1078-0432.CCR-23-1615. PubMed DOI PMC

Roy M., Biswas J., Datta A. Breast Cancer: Epidemiology, Types, Diagnosis, and Treatment. In: Roy M., Biswas J., Datta A., editors. Genetics and Epigenetics of Breast Cancer. Springer Nature; Singapore: 2023. pp. 1–24.

Roheel A., Khan A., Anwar F., Akbar Z., Akhtar M.F., Imran Khan M., Sohail M.F., Ahmad R. Global Epidemiology of Breast Cancer Based on Risk Factors: A Systematic Review. Front. Oncol. 2023;13:1240098. doi: 10.3389/fonc.2023.1240098. PubMed DOI PMC

Duggan C., Trapani D., Ilbawi A.M., Fidarova E., Laversanne M., Curigliano G., Bray F., Anderson B.O. National Health System Characteristics, Breast Cancer Stage at Diagnosis, and Breast Cancer Mortality: A Population-Based Analysis. Lancet Oncol. 2021;22:1632–1642. doi: 10.1016/S1470-2045(21)00462-9. PubMed DOI

Sinha G., Ferrer A.I., Moore C.A., Naaldijk Y., Rameshwar P. Gap Junctions and Breast Cancer Dormancy. Trends Cancer. 2020;6:348–357. doi: 10.1016/j.trecan.2020.01.013. PubMed DOI

Blasco M.T., Espuny I., Gomis R.R. Ecology and Evolution of Dormant Metastasis. Trends Cancer. 2022;8:570–582. doi: 10.1016/j.trecan.2022.03.002. PubMed DOI

Rossari F., Zucchinetti C., Buda G., Orciuolo E. Tumor Dormancy as an Alternative Step in the Development of Chemoresistance and Metastasis-Clinical Implications. Cell. Oncol. 2020;43:155–176. doi: 10.1007/s13402-019-00467-7. PubMed DOI

Dalla E., Sreekumar A., Aguirre-Ghiso J.A., Chodosh L.A. Dormancy in Breast Cancer. Cold Spring Harb. Perspect. Med. 2023;13:a041331. doi: 10.1101/cshperspect.a041331. PubMed DOI PMC

Demicheli R., Abbattista A., Miceli R., Valagussa P., Bonadonna G. Time Distribution of the Recurrence Risk for Breast Cancer Patients Undergoing Mastectomy: Further Support about the Concept of Tumor Dormancy. Breast Cancer Res. Treat. 1996;41:177–185. doi: 10.1007/BF01807163. PubMed DOI

Parker A.L., Cox T.R. The Role of the ECM in Lung Cancer Dormancy and Outgrowth. Front. Oncol. 2020;10:567139. doi: 10.3389/fonc.2020.01766. PubMed DOI PMC

Balayan V., Guddati A.K. Tumor Dormancy: Biologic and Therapeutic Implications. World J. Oncol. 2022;13:8–19. doi: 10.14740/wjon1419. PubMed DOI PMC

Rabinovsky R., Uhr J.W., Vitetta E.S., Yefenof E. Advances in Cancer Research. Volume 97. Academic Press; Cambridge, MA, USA: 2007. Cancer Dormancy: Lessons from a B Cell Lymphoma and Adenocarcinoma of the Prostate; pp. 189–202. PubMed

Werner S., Heidrich I., Pantel K. Clinical Management and Biology of Tumor Dormancy in Breast Cancer. Semin. Cancer Biol. 2022;78:49–62. doi: 10.1016/j.semcancer.2021.02.001. PubMed DOI

Ring A., Spataro M., Wicki A., Aceto N. Clinical and Biological Aspects of Disseminated Tumor Cells and Dormancy in Breast Cancer. Front. Cell Dev. Biol. 2022;10:929893. doi: 10.3389/fcell.2022.929893. PubMed DOI PMC

Aguirre-Ghiso J.A. Models, Mechanisms and Clinical Evidence for Cancer Dormancy. Nat. Rev. Cancer. 2007;7:834–846. doi: 10.1038/nrc2256. PubMed DOI PMC

Ramamoorthi G., Kodumudi K., Gallen C., Zachariah N.N., Basu A., Albert G., Beyer A., Snyder C., Wiener D., Costa R.L.B., et al. Disseminated Cancer Cells in Breast Cancer: Mechanism of Dissemination and Dormancy and Emerging Insights on Therapeutic Opportunities. Semin. Cancer Biol. 2022;78:78–89. doi: 10.1016/j.semcancer.2021.02.004. PubMed DOI

Sosa M.S., Bragado P., Aguirre-Ghiso J.A. Mechanisms of Disseminated Cancer Cell Dormancy: An Awakening Field. Nat. Rev. Cancer. 2014;14:611–622. doi: 10.1038/nrc3793. PubMed DOI PMC

Townson J.L., Chambers A.F. Dormancy of Solitary Metastatic Cells. Cell Cycle. 2006;5:1744–1750. doi: 10.4161/cc.5.16.2864. PubMed DOI

Weston W.A., Barr A.R. A Cell Cycle Centric View of Tumour Dormancy. Br. J. Cancer. 2023;129:1535–1545. doi: 10.1038/s41416-023-02401-z. PubMed DOI PMC

Richbourg N.R., Irakoze N., Kim H., Peyton S.R. Outlook and Opportunities for Engineered Environments of Breast Cancer Dormancy. Sci. Adv. 2024;10:eadl0165. doi: 10.1126/sciadv.adl0165. PubMed DOI PMC

Ranganathan A.C., Adam A.P., Aguirre-Ghiso J.A. Opposing Roles of Mitogenic and Stress Signaling Pathways in the Induction of Cancer Dormancy. Cell Cycle. 2006;5:1799–1807. doi: 10.4161/cc.5.16.3109. PubMed DOI PMC

Naumov G.N., MacDonald I.C., Weinmeister P.M., Kerkvliet N., Nadkarni K.V., Wilson S.M., Morris V.L., Groom A.C., Chambers A.F. Persistence of Solitary Mammary Carcinoma Cells in a Secondary Site: A Possible Contributor to Dormancy1. Cancer Res. 2002;62:2162–2168. PubMed

Bhojani M.S., Ross B.D., Rehemtulla A. TRAIL and Anti-Tumor Responses. Cancer Biol. Ther. 2003;2:70–77. doi: 10.4161/cbt.205. PubMed DOI

Phipps L.E., Hino S., Muschel R.J. Targeting Cell Spreading: A Method of Sensitizing Metastatic Tumor Cells to TRAIL-Induced Apoptosis. Mol. Cancer Res. 2011;9:249–258. doi: 10.1158/1541-7786.MCR-11-0021. PubMed DOI

Fisher J.L., Thomas-Mudge R.J., Elliott J., Hards D.K., Sims N.A., Slavin J., Martin T.J., Gillespie M.T. Osteoprotegerin Overexpression by Breast Cancer Cells Enhances Orthotopic and Osseous Tumor Growth and Contrasts with That Delivered Therapeutically. Cancer Res. 2006;66:3620–3628. doi: 10.1158/0008-5472.CAN-05-3119. PubMed DOI

Neville-Webbe H.L., Cross N.A., Eaton C.L., Nyambo R., Evans C.A., Coleman R.E., Holen I. Osteoprotegerin (OPG) Produced by Bone Marrow Stromal Cells Protects Breast Cancer Cells from TRAIL-Induced Apoptosis. Breast Cancer Res. Treat. 2004;86:271–282. doi: 10.1023/B:BREA.0000036900.48763.b3. PubMed DOI

Maroun C.R., Rowlands T. The Met Receptor Tyrosine Kinase: A Key Player in Oncogenesis and Drug Resistance. Pharmacol. Ther. 2014;142:316–338. doi: 10.1016/j.pharmthera.2013.12.014. PubMed DOI

Zhang X.H.-F., Wang Q., Gerald W., Hudis C.A., Norton L., Smid M., Foekens J.A., Massagué J. Latent Bone Metastasis in Breast Cancer Tied to Src-Dependent Survival Signals. Cancer Cell. 2009;16:67–78. doi: 10.1016/j.ccr.2009.05.017. PubMed DOI PMC

Heim S., Teixeira M.R., Dietrich C.U., Pandis N. Cytogenetic Polyclonality in Tumors of the Breast. Cancer Genet. Cytogenet. 1997;95:16–19. doi: 10.1016/S0165-4608(96)00322-6. PubMed DOI

Klein C.A., Blankenstein T.J., Schmidt-Kittler O., Petronio M., Polzer B., Stoecklein N.H., Riethmüller G. Genetic Heterogeneity of Single Disseminated Tumour Cells in Minimal Residual Cancer. Lancet. 2002;360:683–689. doi: 10.1016/S0140-6736(02)09838-0. PubMed DOI

Zhang Y., Che G. Development of the Relationship between Angiogenesis and Tumor Dormancy. Chin. J. Clin. Oncol. 2007;4:277–281. doi: 10.1007/s11805-007-0278-2. DOI

Indraccolo S., Stievano L., Minuzzo S., Tosello V., Esposito G., Piovan E., Zamarchi R., Chieco-Bianchi L., Amadori A. Interruption of Tumor Dormancy by a Transient Angiogenic Burst within the Tumor Microenvironment. Proc. Natl. Acad. Sci. USA. 2006;103:4216–4221. doi: 10.1073/pnas.0506200103. PubMed DOI PMC

Demicheli R., Retsky M.W., Hrushesky W.J., Baum M. Tumor Dormancy and Surgery-Driven Interruption of Dormancy in Breast Cancer: Learning from Failures. Nat. Rev. Clin. Oncol. 2007;4:699–710. doi: 10.1038/ncponc0999. PubMed DOI

Hussein O., Komarova S.V. Breast Cancer at Bone Metastatic Sites: Recent Discoveries and Treatment Targets. J. Cell Commun. Signal. 2011;5:85–99. doi: 10.1007/s12079-011-0117-3. PubMed DOI PMC

Young S.A.E., Heller A.-D., Garske D.S., Rummler M., Qian V., Ellinghaus A., Duda G.N., Willie B.M., Grüneboom A., Cipitria A. From Breast Cancer Cell Homing to the Onset of Early Bone Metastasis: The Role of Bone (Re)Modeling in Early Lesion Formation. Sci. Adv. 2024;10:eadj0975. doi: 10.1126/sciadv.adj0975. PubMed DOI PMC

Wang Y., Xu Z., Wu K.-L., Yu L., Wang C., Ding H., Gao Y., Sun H., Wu Y.-H., Xia M., et al. Siglec-15/Sialic Acid Axis as a Central Glyco-Immune Checkpoint in Breast Cancer Bone Metastasis. Proc. Natl. Acad. Sci. USA. 2024;121:e2312929121. doi: 10.1073/pnas.2312929121. PubMed DOI PMC

Barkan D., Kleinman H., Simmons J.L., Asmussen H., Kamaraju A.K., Hoenorhoff M.J., Liu Z., Costes S.V., Cho E.H., Lockett S., et al. Inhibition of Metastatic Outgrowth from Single Dormant Tumor Cells by Targeting the Cytoskeleton. Cancer Res. 2008;68:6241–6250. doi: 10.1158/0008-5472.CAN-07-6849. PubMed DOI PMC

Adair T.H., Montani J.-P. Angiogenesis. Morgan & Claypool Life Sciences; San Rafael, CA, USA: 2010. Overview of Angiogenesis. PubMed

Folkman J. Role of Angiogenesis in Tumor Growth and Metastasis. Semin. Oncol. 2002;29:15–18. doi: 10.1016/S0093-7754(02)70065-1. PubMed DOI

Saaristo A., Karpanen T., Alitalo K. Mechanisms of Angiogenesis and Their Use in the Inhibition of Tumor Growth and Metastasis. Oncogene. 2000;19:6122–6129. doi: 10.1038/sj.onc.1203969. PubMed DOI

Rak J.W., St Croix B.D., Kerbel R.S. Consequences of Angiogenesis for Tumor Progression, Metastasis and Cancer Therapy. Anti-Cancer Drugs. 1995;6:3. doi: 10.1097/00001813-199502000-00001. PubMed DOI

Folkman J. Tumor Angiogenesis: A Possible Control Point in Tumor Growth. Ann. Intern. Med. 1975;82:96–100. doi: 10.7326/0003-4819-82-1-96. PubMed DOI

Folkman J. Angiogenesis and Apoptosis. Semin. Cancer Biol. 2003;13:159–167. doi: 10.1016/S1044-579X(02)00133-5. PubMed DOI

Naumov G.N., Bender E., Zurakowski D., Kang S.-Y., Sampson D., Flynn E., Watnick R.S., Straume O., Akslen L.A., Folkman J., et al. A Model of Human Tumor Dormancy: An Angiogenic Switch from the Nonangiogenic Phenotype. JNCI J. Natl. Cancer Inst. 2006;98:316–325. doi: 10.1093/jnci/djj068. PubMed DOI

Gao F., Li X., Xu K., Wang R., Guan X. C-MYC Mediates the Crosstalk between Breast Cancer Cells and Tumor Microenvironment. Cell Commun. Signal. 2023;21:28. doi: 10.1186/s12964-023-01043-1. PubMed DOI PMC

Zangouei A.S., Zangoue M., Taghehchian N., Zangooie A., Reza Rahimi H., Saburi E., Sadat Alavi M., Moghbeli M. Cell Cycle Related Long Non-Coding RNAs as the Critical Regulators of Breast Cancer Progression and Metastasis. Biol. Res. 2023;56:1. doi: 10.1186/s40659-022-00411-4. PubMed DOI PMC

Marvalim C., Datta A., Lee S.C. Role of P53 in Breast Cancer Progression: An Insight into P53 Targeted Therapy. Theranostics. 2023;13:1421–1442. doi: 10.7150/thno.81847. PubMed DOI PMC

Bertram J.S. The Molecular Biology of Cancer. Mol. Asp. Med. 2000;21:167–223. doi: 10.1016/S0098-2997(00)00007-8. PubMed DOI

Weinberg R.A., Weinberg R.A. The Biology of Cancer. W.W. Norton & Company; New York, NY, USA: 2013.

Crespi B., Summers K. Evolutionary Biology of Cancer. Trends Ecol. Evol. 2005;20:545–552. doi: 10.1016/j.tree.2005.07.007. PubMed DOI

Eroles P., Bosch A., Alejandro Pérez-Fidalgo J., Lluch A. Molecular Biology in Breast Cancer: Intrinsic Subtypes and Signaling Pathways. Cancer Treat. Rev. 2012;38:698–707. doi: 10.1016/j.ctrv.2011.11.005. PubMed DOI

Nolan E., Lindeman G.J., Visvader J.E. Deciphering Breast Cancer: From Biology to the Clinic. Cell. 2023;186:1708–1728. doi: 10.1016/j.cell.2023.01.040. PubMed DOI

MacKie R.M., Reid R., Junor B. Fatal Melanoma Transferred in a Donated Kidney 16 Years after Melanoma Surgery. N. Engl. J. Med. 2003;348:567–568. doi: 10.1056/NEJM200302063480620. PubMed DOI

Suranyi M.G., Hogan P.G., Falk M.C., Axelsen R.A., Rigby R., Hawley C., Petrie J. ADVANCED DONOR-ORIGIN MELANOMA IN A RENAL TRANSPLANT RECIPIENT: Immunotherapy, Cure, and Retransplantation. Transplantation. 1998;66:655. doi: 10.1097/00007890-199809150-00020. PubMed DOI

Fattouh K., Ducroux E., Decullier E., Kanitakis J., Morelon E., Boissonnat P., Sebbag L., Jullien D., Euvrard S. Increasing Incidence of Melanoma after Solid Organ Transplantation: A Retrospective Epidemiological Study. Transpl. Int. 2017;30:1172–1180. doi: 10.1111/tri.13011. PubMed DOI

Granata S., Tessari G., Stallone G., Zaza G. Skin Cancer in Solid Organ Transplant Recipients: Still an Open Problem. Front. Med. 2023;10:1189680. doi: 10.3389/fmed.2023.1189680. PubMed DOI PMC

Rosales B.M., Hedley J., De La Mata N., Cavazzoni E., Vajdic C.M., Thompson J.F., Kelly P.J., Wyburn K., Webster A.C. Transmission and Non-Transmission of Melanoma from Deceased Solid Organ Donors to Transplant Recipients: Risks and Missed Opportunities. Transplantation. 2024;108:1623–1631. doi: 10.1097/TP.0000000000004961. PubMed DOI

Wenande E., Togsverd-Bo K., Hastrup A., Lei U., Philipsen P.A., Haedersdal M. Skin Cancer Development Is Strongly Associated with Actinic Keratosis in Solid Organ Transplant Recipients: A Danish Cohort Study. Dermatology. 2023;239:393–402. doi: 10.1159/000529369. PubMed DOI

Kulbat A., Richter K., Krzysztofik M., Batko K., Karwańska A., Kołodziej-Rzepa M., Wojewoda T., Wysocki W.M. Melanoma Incidence in 17,252 Organ Transplant Recipients in Poland in 2010–2022. Nowotw. J. Oncol. 2024;74:173–179. doi: 10.5603/njo.99186. DOI

Das U., Banik S., Nadumane S.S., Chakrabarti S., Gopal D., Kabekkodu S.P., Srisungsitthisunti P., Mazumder N., Biswas R. Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics. 2023;15:280. doi: 10.3390/pharmaceutics15010280. PubMed DOI PMC

Vishnoi M., Peddibhotla S., Yin W., Scamardo A.T., George G.C., Hong D.S., Marchetti D. The Isolation and Characterization of CTC Subsets Related to Breast Cancer Dormancy. Sci. Rep. 2015;5:17533. doi: 10.1038/srep17533. PubMed DOI PMC

Truskowski K., Amend S.R., Pienta K.J. Dormant Cancer Cells: Programmed Quiescence, Senescence, or Both? Cancer Metastasis Rev. 2023;42:37–47. doi: 10.1007/s10555-022-10073-z. PubMed DOI PMC

Nasr M.M., Lynch C.C. How Circulating Tumor Cluster Biology Contributes to the Metastatic Cascade: From Invasion to Dissemination and Dormancy. Cancer Metastasis Rev. 2023;42:1133–1146. doi: 10.1007/s10555-023-10124-z. PubMed DOI PMC

Min H.-Y., Lee H.-Y. Cellular Dormancy in Cancer: Mechanisms and Potential Targeting Strategies. Cancer Res. Treat. 2023;55:720–736. doi: 10.4143/crt.2023.468. PubMed DOI PMC

Wu S., Zhao S., Cui D., Xie J. Advances in the Biology, Detection Techniques, and Clinical Applications of Circulating Tumor Cells. J. Oncol. 2022;2022:7149686. doi: 10.1155/2022/7149686. PubMed DOI PMC

Baker B.M., Chen C.S. Deconstructing the Third Dimension–How 3D Culture Microenvironments Alter Cellular Cues. J. Cell Sci. 2012;125:3015–3024. doi: 10.1242/jcs.079509. PubMed DOI PMC

Rijal G., Li W. A Versatile 3D Tissue Matrix Scaffold System for Tumor Modeling and Drug Screening. Sci. Adv. 2017;3:e1700764. doi: 10.1126/sciadv.1700764. PubMed DOI PMC

Ghajar C.M., Peinado H., Mori H., Matei I.R., Evason K.J., Brazier H., Almeida D., Koller A., Hajjar K.A., Stainier D.Y.R., et al. The Perivascular Niche Regulates Breast Tumour Dormancy. Nat. Cell Biol. 2013;15:807–817. doi: 10.1038/ncb2767. PubMed DOI PMC

Ren Q., Khoo W.H., Corr A.P., Phan T.G., Croucher P.I., Stewart S.A. Gene Expression Predicts Dormant Metastatic Breast Cancer Cell Phenotype. Breast Cancer Res. 2022;24:10. doi: 10.1186/s13058-022-01503-5. PubMed DOI PMC

Patel A.P., Tirosh I., Trombetta J.J., Shalek A.K., Gillespie S.M., Wakimoto H., Cahill D.P., Nahed B.V., Curry W.T., Martuza R.L., et al. Single-Cell RNA-Seq Highlights Intratumoral Heterogeneity in Primary Glioblastoma. Science. 2014;344:1396–1401. doi: 10.1126/science.1254257. PubMed DOI PMC

Navin N., Kendall J., Troge J., Andrews P., Rodgers L., McIndoo J., Cook K., Stepansky A., Levy D., Esposito D., et al. Tumour Evolution Inferred by Single-Cell Sequencing. Nature. 2011;472:90–94. doi: 10.1038/nature09807. PubMed DOI PMC

Zhang Y., Wang D., Peng M., Tang L., Ouyang J., Xiong F., Guo C., Tang Y., Zhou Y., Liao Q., et al. Single-cell RNA Sequencing in Cancer Research. J. Exp. Clin. Cancer Res. 2021;40:81. doi: 10.1186/s13046-021-01874-1. PubMed DOI PMC

Wang Y., Waters J., Leung M.L., Unruh A., Roh W., Shi X., Chen K., Scheet P., Vattathil S., Liang H., et al. Clonal Evolution in Breast Cancer Revealed by Single Nucleus Genome Sequencing. Nature. 2014;512:155–160. doi: 10.1038/nature13600. PubMed DOI PMC

Kedrin D., Gligorijevic B., Wyckoff J., Verkhusha V.V., Condeelis J., Segall J.E., van Rheenen J. Intravital Imaging of Metastatic Behavior through a Mammary Imaging Window. Nat. Methods. 2008;5:1019–1021. doi: 10.1038/nmeth.1269. PubMed DOI PMC

Ellenbroek S.I.J., van Rheenen J. Imaging Hallmarks of Cancer in Living Mice. Nat. Rev. Cancer. 2014;14:406–418. doi: 10.1038/nrc3742. PubMed DOI

Talukdar S., Bhoopathi P., Emdad L., Das S., Sarkar D., Fisher P.B. Chapter Two-Dormancy and Cancer Stem Cells: An Enigma for Cancer Therapeutic Targeting. In: Civin C.I., Kingsbury T.J., Kim M., Fisher P.B., editors. Advances in Cancer Research. Volume 141. Academic Press; Cambridge, MA, USA: 2019. pp. 43–84. Cancer Stem Cells. PubMed

Aguirre-Ghiso J.A. Translating the Science of Cancer Dormancy to the Clinic. Cancer Res. 2021;81:4673–4675. doi: 10.1158/0008-5472.CAN-21-1407. PubMed DOI PMC

Phan T.G., Croucher P.I. The Dormant Cancer Cell Life Cycle. Nat. Rev. Cancer. 2020;20:398–411. doi: 10.1038/s41568-020-0263-0. PubMed DOI

Morales-Valencia J., David G. The Origins of Cancer Cell Dormancy. Curr. Opin. Genet. Dev. 2022;74:101914. doi: 10.1016/j.gde.2022.101914. PubMed DOI PMC

Risson E., Nobre A.R., Maguer-Satta V., Aguirre-Ghiso J.A. The Current Paradigm and Challenges Ahead for the Dormancy of Disseminated Tumor Cells. Nat. Cancer. 2020;1:672–680. doi: 10.1038/s43018-020-0088-5. PubMed DOI PMC

Ferrer A.I., Trinidad J.R., Sandiford O., Etchegaray J.-P., Rameshwar P. Epigenetic Dynamics in Cancer Stem Cell Dormancy. Cancer Metastasis Rev. 2020;39:721–738. doi: 10.1007/s10555-020-09882-x. PubMed DOI

Summers M.A., McDonald M.M., Croucher P.I. Cancer Cell Dormancy in Metastasis. Cold Spring Harb. Perspect. Med. 2020;10:a037556. doi: 10.1101/cshperspect.a037556. PubMed DOI PMC

Rack B.K., Schindlbeck C., Andergassen U., Schneeweiss A., Zwingers T., Lichtenegger W., Beckmann M., Sommer H.L., Pantel K., Janni W., et al. Use of Circulating Tumor Cells (CTC) in Peripheral Blood of Breast Cancer Patients before and after Adjuvant Chemotherapy to Predict Risk for Relapse: The SUCCESS Trial. J. Clin. Oncol. 2010;28:1003. doi: 10.1200/jco.2010.28.15_suppl.1003. DOI

Becker S., Solomayer E., Becker-Pergola G., Wallwiener D., Fehm T. Primary Systemic Therapy Does Not Eradicate Disseminated Tumor Cells in Breast Cancer Patients. Breast Cancer Res. Treat. 2007;106:239–243. doi: 10.1007/s10549-006-9484-5. PubMed DOI

Damen M.P.F., van Rheenen J., Scheele C.L.G.J. Targeting Dormant Tumor Cells to Prevent Cancer Recurrence. FEBS J. 2021;288:6286–6303. doi: 10.1111/febs.15626. PubMed DOI

Sauer S., Reed D.R., Ihnat M., Hurst R.E., Warshawsky D., Barkan D. Innovative Approaches in the Battle Against Cancer Recurrence: Novel Strategies to Combat Dormant Disseminated Tumor Cells. Front. Oncol. 2021;11:659963. doi: 10.3389/fonc.2021.659963. PubMed DOI PMC

Francescangeli F., De Angelis M.L., Rossi R., Cuccu A., Giuliani A., De Maria R., Zeuner A. Dormancy, Stemness, and Therapy Resistance: Interconnected Players in Cancer Evolution. Cancer Metastasis Rev. 2023;42:197–215. doi: 10.1007/s10555-023-10092-4. PubMed DOI PMC

Triana-Martínez F., Loza M.I., Domínguez E. Beyond Tumor Suppression: Senescence in Cancer Stemness and Tumor Dormancy. Cells. 2020;9:346. doi: 10.3390/cells9020346. PubMed DOI PMC

Sistigu A., Musella M., Galassi C., Vitale I., De Maria R. Tuning Cancer Fate: Tumor Microenvironment’s Role in Cancer Stem Cell Quiescence and Reawakening. Front. Immunol. 2020;11:2166. doi: 10.3389/fimmu.2020.02166. PubMed DOI PMC

Bakhshandeh S., Werner C., Fratzl P., Cipitria A. Microenvironment-Mediated Cancer Dormancy: Insights from Metastability Theory. Proc. Natl. Acad. Sci. USA. 2022;119:e2111046118. doi: 10.1073/pnas.2111046118. PubMed DOI PMC

Gu Y., Bui T., Muller W.J. Exploiting Mouse Models to Recapitulate Clinical Tumor Dormancy and Recurrence in Breast Cancer. Endocrinology. 2022;163:bqac055. doi: 10.1210/endocr/bqac055. PubMed DOI

Burstein H.J., Lacchetti C., Anderson H., Buchholz T.A., Davidson N.E., Gelmon K.A., Giordano S.H., Hudis C.A., Solky A.J., Stearns V., et al. Adjuvant Endocrine Therapy for Women with Hormone Receptor–Positive Breast Cancer: ASCO Clinical Practice Guideline Focused Update. J. Clin. Oncol. 2019;37:423–438. doi: 10.1200/JCO.18.01160. PubMed DOI

Cardoso F., Kyriakides S., Ohno S., Penault-Llorca F., Poortmans P., Rubio I.T., Zackrisson S., Senkus E. Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019;30:1194–1220. doi: 10.1093/annonc/mdz173. PubMed DOI

Davies C., Pan H., Godwin J., Gray R., Arriagada R., Raina V., Abraham M., Alencar V.H.M., Badran A., Bonfill X., et al. Long-Term Effects of Continuing Adjuvant Tamoxifen to 10 Years versus Stopping at 5 Years after Diagnosis of Oestrogen Receptor-Positive Breast Cancer: ATLAS, a Randomised Trial. Lancet. 2013;381:805–816. doi: 10.1016/S0140-6736(12)61963-1. PubMed DOI PMC

Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) Aromatase Inhibitors versus Tamoxifen in Early Breast Cancer: Patient-Level Meta-Analysis of the Randomised Trials. Lancet. 2015;386:1341–1352. doi: 10.1016/S0140-6736(15)61074-1. PubMed DOI

Kuźnik A., Październiok-Holewa A., Jewula P., Kuźnik N. Bisphosphonates—Much More than Only Drugs for Bone Diseases. Eur. J. Pharmacol. 2020;866:172773. doi: 10.1016/j.ejphar.2019.172773. PubMed DOI

Drake M.T., Clarke B.L., Khosla S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin. Proc. 2008;83:1032–1045. doi: 10.4065/83.9.1032. PubMed DOI PMC

Miller P.D., Watts N.B. Osteoporosis. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2013. Bisphosphonates; pp. 123–143.

Center J.R., Lyles K.W., Bliuc D. Bisphosphonates and Lifespan. Bone. 2020;141:115566. doi: 10.1016/j.bone.2020.115566. PubMed DOI

Gralow J.R., Barlow W.E., Paterson A.H.G., M’iao J.L., Lew D.L., Stopeck A.T., Hayes D.F., Hershman D.L., Schubert M.M., Clemons M., et al. Phase III Randomized Trial of Bisphosphonates as Adjuvant Therapy in Breast Cancer: S0307. JNCI J. Natl. Cancer Inst. 2020;112:698–707. doi: 10.1093/jnci/djz215. PubMed DOI PMC

Gnant M., Pfeiler G., Steger G.G., Egle D., Greil R., Fitzal F., Wette V., Balic M., Haslbauer F., Melbinger-Zeinitzer E., et al. Adjuvant Denosumab in Postmenopausal Patients with Hormone Receptor-Positive Breast Cancer (ABCSG-18): Disease-Free Survival Results from a Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019;20:339–351. doi: 10.1016/S1470-2045(18)30862-3. PubMed DOI

Kaiser T., Teufel I., Geiger K., Vater Y., Aicher W.K., Klein G., Fehm T. Bisphosphonates Modulate Vital Functions of Human Osteoblasts and Affect Their Interactions with Breast Cancer Cells. Breast Cancer Res. Treat. 2013;140:35–48. doi: 10.1007/s10549-013-2613-z. PubMed DOI

Bailey S., Ezratty C., Mhango G., Lin J.J. Clinical and Sociodemographic Risk Factors Associated with the Development of Second Primary Cancers among Postmenopausal Breast Cancer Survivors. Breast Cancer. 2023;30:215–225. doi: 10.1007/s12282-022-01411-8. PubMed DOI PMC

Holen I., Coleman R.E. Anti-Tumour Activity of Bisphosphonates in Preclinical Models of Breast Cancer. Breast Cancer Res. 2010;12:214. doi: 10.1186/bcr2769. PubMed DOI PMC

Clézardin P., Ebetino F.H., Fournier P.G.J. Bisphosphonates and Cancer-Induced Bone Disease: Beyond Their Antiresorptive Activity. Cancer Res. 2005;65:4971–4974. doi: 10.1158/0008-5472.CAN-05-0264. PubMed DOI

Bedard P.L., Body J.-J., Piccart-Gebhart M.J. Sowing the Soil for Cure? Results of the ABCSG-12 Trial Open a New Chapter in the Evolving Adjuvant Bisphosphonate Story in Early Breast Cancer. J. Clin. Oncol. 2009;27:4043–4046. doi: 10.1200/JCO.2008.21.4908. PubMed DOI

Wiemer A.J., Hohl R.J., Wiemer D.F. The Intermediate Enzymes of Isoprenoid Metabolism as Anticancer Targets. Anti-Cancer Agents Med. Chem. 2009;9:526–542. doi: 10.2174/187152009788451860. PubMed DOI

Stresing V., Fournier P.G., Bellahcène A., Benzaïd I., Mönkkönen H., Colombel M., Ebetino F.H., Castronovo V., Clézardin P. Nitrogen-Containing Bisphosphonates Can Inhibit Angiogenesis in Vivo without the Involvement of Farnesyl Pyrophosphate Synthase. Bone. 2011;48:259–266. doi: 10.1016/j.bone.2010.09.035. PubMed DOI

Benzaïd I., Mönkkönen H., Stresing V., Bonnelye E., Green J., Mönkkönen J., Touraine J.-L., Clézardin P. High Phosphoantigen Levels in Bisphosphonate-Treated Human Breast Tumors Promote Vgamma9Vdelta2 T-Cell Chemotaxis and Cytotoxicity in Vivo. Cancer Res. 2011;71:4562–4572. doi: 10.1158/0008-5472.CAN-10-3862. PubMed DOI

Winter M.C., Holen I., Coleman R.E. Exploring the Anti-Tumour Activity of Bisphosphonates in Early Breast Cancer. Cancer Treat. Rev. 2008;34:453–475. doi: 10.1016/j.ctrv.2008.02.004. PubMed DOI

Gnant M., Clézardin P. Direct and Indirect Anticancer Activity of Bisphosphonates: A Brief Review of Published Literature. Cancer Treat. Rev. 2012;38:407–415. doi: 10.1016/j.ctrv.2011.09.003. PubMed DOI

Yang S.X. Bevacizumab and Breast Cancer: Current Therapeutic Progress and Future Perspectives. Expert Rev. Anticancer Ther. 2009;9:1715–1725. doi: 10.1586/era.09.153. PubMed DOI PMC

Zheng H., Wu L., Chen J., Na N., Lou G. Neoadjuvant Nivolumab plus Bevacizumab Therapy Improves the Prognosis of Triple-Negative Breast Cancer in Humanized Mouse Models. Breast Cancer. 2024;31:371–381. doi: 10.1007/s12282-024-01543-z. PubMed DOI

Hu Y., Chen P., Xiang F. Efficacy Evaluation of Bevacizumab Combined with Capecitabine in the Treatment of HER2-Negative Metastatic Breast Cancer: A Meta-Analysis. J. Oncol. 2023;2023:e8740221. doi: 10.1155/2023/8740221. PubMed DOI PMC

Yamamoto Y., Yamashiro H., Schneeweiss A., Müller V., Gluz O., Klare P., Aktas B., Magdolna D., Büdi L., Pikó B., et al. Factors Affecting Prognosis in Patients Treated with Bevacizumab plus Paclitaxel as First-Line Chemotherapy for HER2-Negative Metastatic Breast Cancer: An International Pooled Analysis of Individual Patient Data from Four Prospective Observational Studies. Breast Cancer. 2023;30:88–100. doi: 10.1007/s12282-022-01399-1. PubMed DOI PMC

Matsui K., Earashi M., Yoshikawa A., Fukushima W., Nozaki Z., Oyama K., Maeda K., Nakakura A., Morita S., Fujii T. Real-world Effect of Bevacizumab and Eribulin on Metastatic Breast Cancer Using a Propensity Score Matching Analysis. Mol. Clin. Oncol. 2023;18:12. doi: 10.3892/mco.2023.2608. PubMed DOI PMC

Mayer E.L., Tayob N., Ren S., Savoie J.J., Spigel D.R., Burris H.A., Ryan P.D., Harris L.N., Winer E.P., Burstein H.J. A Randomized Phase II Study of Metronomic Cyclophosphamide and Methotrexate (CM) with or without Bevacizumab in Patients with Advanced Breast Cancer. Breast Cancer Res. Treat. 2024;204:123–132. doi: 10.1007/s10549-023-07167-9. PubMed DOI

Miles D.W., Diéras V., Cortés J., Duenne A.-A., Yi J., O’Shaughnessy J. First-Line Bevacizumab in Combination with Chemotherapy for HER2-Negative Metastatic Breast Cancer: Pooled and Subgroup Analyses of Data from 2447 Patients. Ann. Oncol. 2013;24:2773–2780. doi: 10.1093/annonc/mdt276. PubMed DOI

Romond E.H., Perez E.A., Bryant J., Suman V.J., Geyer C.E., Jr., Davidson N.E., Tan-Chiu E., Martino S., Paik S., Kaufman P.A., et al. Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer. N. Engl. J. Med. 2005;353:1673–1684. doi: 10.1056/NEJMoa052122. PubMed DOI

Bradley R., Braybrooke J., Gray R., Hills R., Liu Z., Peto R., Davies L., Dodwell D., McGale P., Pan H., et al. Trastuzumab for Early-Stage, HER2-Positive Breast Cancer: A Meta-Analysis of 13 864 Women in Seven Randomised Trials. Lancet Oncol. 2021;22:1139–1150. doi: 10.1016/S1470-2045(21)00288-6. PubMed DOI PMC

von Minckwitz G., Huang C.-S., Mano M.S., Loibl S., Mamounas E.P., Untch M., Wolmark N., Rastogi P., Schneeweiss A., Redondo A., et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019;380:617–628. doi: 10.1056/NEJMoa1814017. PubMed DOI

Viani G.A., Afonso S.L., Stefano E.J., De Fendi L.I., Soares F.V. Adjuvant Trastuzumab in the Treatment of Her-2-Positive Early Breast Cancer: A Meta-Analysis of Published Randomized Trials. BMC Cancer. 2007;7:153. doi: 10.1186/1471-2407-7-153. PubMed DOI PMC

Ma R., Shi Y., Yan R., Yin S., Bu H., Huang J. Efficacy and Safety of Trastuzumab Deruxtecan in Treating Human Epidermal Growth Factor Receptor 2-Low/Positive Advanced Breast Cancer:A Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Oncol./Hematol. 2024;196:104305. doi: 10.1016/j.critrevonc.2024.104305. PubMed DOI

Falcón González A., Cruz Jurado J., Llabrés Valenti E., Urbano Cubero R., Álamo de la Gala M.C., Martínez Guisado M.A., Álvarez Ambite R., Rodríguez González C.J., Amérigo Góngora M., Rodríguez Pérez L., et al. Real-World Experience with Pertuzumab and Trastuzumab Combined with Chemotherapy in Neoadjuvant Treatment for Patients with Early-Stage HER2-Positive Breast Cancer: The NEOPERSUR Study. Clin. Transl. Oncol. 2024 doi: 10.1007/s12094-024-03440-5. PubMed DOI PMC

Huang L., Pang D., Yang H., Li W., Wang S., Cui S., Liao N., Wang Y., Wang C., Chang Y.-C., et al. Neoadjuvant–Adjuvant Pertuzumab in HER2-Positive Early Breast Cancer: Final Analysis of the Randomized Phase III PEONY Trial. Nat. Commun. 2024;15:2153. doi: 10.1038/s41467-024-45591-7. PubMed DOI PMC

Sharman Moser S., Apter L., Livnat I., Ginsburg R., Yarden A., Drori M., Drizon A., Chodick G., Siegelmann-Danieli N. Clinical Outcomes of Patients with HER2 Positive Metastatic Breast Cancer to the Brain, with First-Line Trastuzumab, Pertuzumab and Chemotherapy, in a Real-World Setting. Breast Cancer Targets Ther. 2024;16:105–116. doi: 10.2147/BCTT.S439158. PubMed DOI PMC

Slamon D.J., Godolphin W., Jones L.A., Holt J.A., Wong S.G., Keith D.E., Levin W.J., Stuart S.G., Udove J., Ullrich A., et al. Studies of the HER-2/Neu Proto-Oncogene in Human Breast and Ovarian Cancer. Science. 1989;244:707–712. doi: 10.1126/science.2470152. PubMed DOI

Krawczyk N., Banys M., Neubauer H., Solomayer E.-F., Gall C., Hahn M., Becker S., Bachmann R., Wallwiener D., Fehm T. HER2 Status on Persistent Disseminated Tumor Cells after Adjuvant Therapy May Differ from Initial HER2 Status on Primary Tumor. Anticancer Res. 2009;29:4019–4024. PubMed

Meng S., Tripathy D., Shete S., Ashfaq R., Haley B., Perkins S., Beitsch P., Khan A., Euhus D., Osborne C., et al. HER-2 Gene Amplification Can Be Acquired as Breast Cancer Progresses. Proc. Natl. Acad. Sci. USA. 2004;101:9393–9398. doi: 10.1073/pnas.0402993101. PubMed DOI PMC

Jueckstock J., Rack B., Schindlbeck C., Hofmann S., Zill B., Mylonas I., Blankenstein T., Janni W., Friese K. Treatment with Trastuzumab in Recurrence Free Patients with Early Breast Cancer and Persistent Disseminated Tumor Cells (DTC) in Bone Marrow. Cancer Res. 2009;69:3135. doi: 10.1158/0008-5472.SABCS-3135. DOI

Saxena M., van der Burg S.H., Melief C.J.M., Bhardwaj N. Therapeutic Cancer Vaccines. Nat. Rev. Cancer. 2021;21:360–378. doi: 10.1038/s41568-021-00346-0. PubMed DOI

Lin M.J., Svensson-Arvelund J., Lubitz G.S., Marabelle A., Melero I., Brown B.D., Brody J.D. Cancer Vaccines: The next Immunotherapy Frontier. Nat. Cancer. 2022;3:911–926. doi: 10.1038/s43018-022-00418-6. PubMed DOI

Vajari M.K., Sanaei M.-J., Salari S., Rezvani A., Ravari M.S., Bashash D. Breast Cancer Vaccination: Latest Advances with an Analytical Focus on Clinical Trials. Int. Immunopharmacol. 2023;123:110696. doi: 10.1016/j.intimp.2023.110696. PubMed DOI

Debien V., De Caluwé A., Wang X., Piccart-Gebhart M., Tuohy V.K., Romano E., Buisseret L. Immunotherapy in Breast Cancer: An Overview of Current Strategies and Perspectives. npj Breast Cancer. 2023;9:7. doi: 10.1038/s41523-023-00508-3. PubMed DOI PMC

Schlom J. Therapeutic Cancer Vaccines: Current Status and Moving Forward. JNCI J. Natl. Cancer Inst. 2012;104:599–613. doi: 10.1093/jnci/djs033. PubMed DOI PMC

Ubowski M.M., VanSice R., Marriott M., Yacobucci M.J., Chablani L. Amplifying Immune Responses: Microparticulate Vaccine Approach Against Breast Cancer. Breast Cancer Targets Ther. 2024;16:149–162. doi: 10.2147/BCTT.S441368. PubMed DOI PMC

Morse M.A., Crosby E.J., Force J., Osada T., Hobeika A.C., Hartman Z.C., Berglund P., Smith J., Lyerly H.K. Clinical Trials of Self-Replicating RNA-Based Cancer Vaccines. Cancer Gene Ther. 2023;30:803–811. doi: 10.1038/s41417-023-00587-1. PubMed DOI PMC

Disis M.L., Guthrie K.A., Liu Y., Coveler A.L., Higgins D.M., Childs J.S., Dang Y., Salazar L.G. Safety and Outcomes of a Plasmid DNA Vaccine Encoding the ERBB2 Intracellular Domain in Patients with Advanced-Stage ERBB2-Positive Breast Cancer: A Phase 1 Nonrandomized Clinical Trial. JAMA Oncol. 2023;9:71–78. doi: 10.1001/jamaoncol.2022.5143. PubMed DOI PMC

Ko B.K., Kawano K., Murray J.L., Disis M.L., Efferson C.L., Kuerer H.M., Peoples G.E., Ioannides C.G. Clinical Studies of Vaccines Targeting Breast Cancer1. Clin. Cancer Res. 2003;9:3222–3234. PubMed

Curigliano G., Spitaleri G., Pietri E., Rescigno M., de Braud F., Cardillo A., Munzone E., Rocca A., Bonizzi G., Brichard V., et al. Breast Cancer Vaccines: A Clinical Reality or Fairy Tale? Ann. Oncol. 2006;17:750–762. doi: 10.1093/annonc/mdj083. PubMed DOI

Smith I.E., Dowsett M. Aromatase Inhibitors in Breast Cancer. N. Engl. J. Med. 2003;348:2431–2442. doi: 10.1056/NEJMra023246. PubMed DOI

Cuzick J., Powles T., Veronesi U., Forbes J., Edwards R., Ashley S., Boyle P. Overview of the Main Outcomes in Breast-Cancer Prevention Trials. Lancet. 2003;361:296–300. doi: 10.1016/S0140-6736(03)12342-2. PubMed DOI

Howell A., Cuzick J., Baum M., Buzdar A., Dowsett M., Forbes J.F., Hoctin-Boes G., Houghton J., Locker G.Y., Tobias J.S., et al. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) Trial after Completion of 5 Years’ Adjuvant Treatment for Breast Cancer. Lancet. 2005;365:60–62. doi: 10.1016/S0140-6736(04)17666-6. PubMed DOI

Di Leo A., Jerusalem G., Petruzelka L., Torres R., Bondarenko I.N., Khasanov R., Verhoeven D., Pedrini J.L., Smirnova I., Lichinitser M.R., et al. Final Overall Survival: Fulvestrant 500 Mg vs 250 Mg in the Randomized CONFIRM Trial. J. Natl. Cancer Inst. 2014;106:djt337. doi: 10.1093/jnci/djt337. PubMed DOI PMC

Adams S., Loi S., Toppmeyer D., Cescon D.W., Laurentiis M.D., Nanda R., Winer E.P., Mukai H., Tamura K., Armstrong A., et al. Pembrolizumab Monotherapy for Previously Untreated, PD-L1-Positive, Metastatic Triple-Negative Breast Cancer: Cohort B of the Phase II KEYNOTE-086 Study. Ann. Oncol. 2019;30:405–411. doi: 10.1093/annonc/mdy518. PubMed DOI

Schmid P., Cortes J., Pusztai L., McArthur H., Kümmel S., Bergh J., Denkert C., Park Y.H., Hui R., Harbeck N., et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020;382:810–821. doi: 10.1056/NEJMoa1910549. PubMed DOI

Robson M., Im S.-A., Senkus E., Xu B., Domchek S.M., Masuda N., Delaloge S., Li W., Tung N., Armstrong A., et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017;377:523–533. doi: 10.1056/NEJMoa1706450. PubMed DOI

Litton J.K., Rugo H.S., Ettl J., Hurvitz S.A., Gonçalves A., Lee K.-H., Fehrenbacher L., Yerushalmi R., Mina L.A., Martin M., et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N. Engl. J. Med. 2018;379:753–763. doi: 10.1056/NEJMoa1802905. PubMed DOI PMC

Hortobagyi G.N., Stemmer S.M., Burris H.A., Yap Y.-S., Sonke G.S., Paluch-Shimon S., Campone M., Blackwell K.L., André F., Winer E.P., et al. Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N. Engl. J. Med. 2016;375:1738–1748. doi: 10.1056/NEJMoa1609709. PubMed DOI

Sledge G.W., Toi M., Neven P., Sohn J., Inoue K., Pivot X., Burdaeva O., Okera M., Masuda N., Kaufman P.A., et al. MONARCH 2: Abemaciclib in Combination with Fulvestrant in Women With HR+/HER2- Advanced Breast Cancer Who Had Progressed While Receiving Endocrine Therapy. J. Clin. Oncol. 2017;35:2875–2884. doi: 10.1200/JCO.2017.73.7585. PubMed DOI

Turner N., Pearson A., Sharpe R., Lambros M., Geyer F., Lopez-Garcia M.A., Natrajan R., Marchio C., Iorns E., Mackay A., et al. FGFR1 Amplification Drives Endocrine Therapy Resistance and Is a Therapeutic Target in Breast Cancer. Cancer Res. 2010;70:2085–2094. doi: 10.1158/0008-5472.CAN-09-3746. PubMed DOI PMC

Jones P.A., Baylin S.B. The Epigenomics of Cancer. Cell. 2007;128:683–692. doi: 10.1016/j.cell.2007.01.029. PubMed DOI PMC

Stefansson O.A., Esteller M. Epigenetic Modifications in Breast Cancer and Their Role in Personalized Medicine. Am. J. Pathol. 2013;183:1052–1063. doi: 10.1016/j.ajpath.2013.04.033. PubMed DOI

Baylin S.B., Jones P.A. A Decade of Exploring the Cancer Epigenome—Biological and Translational Implications. Nat. Rev. Cancer. 2011;11:726–734. doi: 10.1038/nrc3130. PubMed DOI PMC

Toyota M., Issa J.-P.J. CpG Island Methylator Phenotypes in Aging and Cancer. Semin. Cancer Biol. 1999;9:349–357. doi: 10.1006/scbi.1999.0135. PubMed DOI

Bannister A.J., Kouzarides T. Regulation of Chromatin by Histone Modifications. Cell Res. 2011;21:381–395. doi: 10.1038/cr.2011.22. PubMed DOI PMC

Schwaller J. Learning from Mouse Models of MLL Fusion Gene-Driven Acute Leukemia. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2020;1863:194550. doi: 10.1016/j.bbagrm.2020.194550. PubMed DOI

Dawson M.A., Kouzarides T. Cancer Epigenetics: From Mechanism to Therapy. Cell. 2012;150:12–27. doi: 10.1016/j.cell.2012.06.013. PubMed DOI

Chi P., Allis C.D., Wang G.G. Covalent Histone Modifications—Miswritten, Misinterpreted and Mis-Erased in Human Cancers. Nat. Rev. Cancer. 2010;10:457–469. doi: 10.1038/nrc2876. PubMed DOI PMC

Clapier C.R., Cairns B.R. The Biology of Chromatin Remodeling Complexes. Annu. Rev. Biochem. 2009;78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223. PubMed DOI

Lusser A., Kadonaga J.T. Chromatin Remodeling by ATP-Dependent Molecular Machines. BioEssays. 2003;25:1192–1200. doi: 10.1002/bies.10359. PubMed DOI

Hargreaves D.C., Crabtree G.R. ATP-Dependent Chromatin Remodeling: Genetics, Genomics and Mechanisms. Cell Res. 2011;21:396–420. doi: 10.1038/cr.2011.32. PubMed DOI PMC

Wood L.D., Parsons D.W., Jones S., Lin J., Sjöblom T., Leary R.J., Shen D., Boca S.M., Barber T., Ptak J., et al. The Genomic Landscapes of Human Breast and Colorectal Cancers. Science. 2007;318:1108–1113. doi: 10.1126/science.1145720. PubMed DOI

Karim A.M., Eun Kwon J., Ali T., Jang J., Ullah I., Lee Y.-G., Park D.W., Park J., Jeang J.W., Kang S.C. Triple-Negative Breast Cancer: Epidemiology, Molecular Mechanisms, and Modern Vaccine-Based Treatment Strategies. Biochem. Pharmacol. 2023;212:115545. doi: 10.1016/j.bcp.2023.115545. PubMed DOI

Cavalli G., Heard E. Advances in Epigenetics Link Genetics to the Environment and Disease. Nature. 2019;571:489–499. doi: 10.1038/s41586-019-1411-0. PubMed DOI

Bouyahya A., El Hachlafi N., Aanniz T., Bourais I., Mechchate H., Benali T., Shariati M.A., Burkov P., Lorenzo J.M., Wilairatana P., et al. Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. Molecules. 2022;27:2568. doi: 10.3390/molecules27082568. PubMed DOI PMC

Yang T., Yang Y., Wang Y. Predictive Biomarkers and Potential Drug Combinations of Epi-Drugs in Cancer Therapy. Clin. Epigenet. 2021;13:113. doi: 10.1186/s13148-021-01098-2. PubMed DOI PMC

Rosano D., Sofyali E., Dhiman H., Ghirardi C., Ivanoiu D., Heide T., Vingiani A., Bertolotti A., Pruneri G., Canale E., et al. Long-Term Multimodal Recording Reveals Epigenetic Adaptation Routes in Dormant Breast Cancer Cells. Cancer Discov. 2024;14:866–889. doi: 10.1158/2159-8290.CD-23-1161. PubMed DOI PMC

Mabe N.W., Garcia N.M.G., Wolery S.E., Newcomb R., Meingasner R.C., Vilona B.A., Lupo R., Lin C.-C., Chi J.-T., Alvarez J.V. G9a Promotes Breast Cancer Recurrence through Repression of a Pro-Inflammatory Program. Cell Rep. 2020;33:108341. doi: 10.1016/j.celrep.2020.108341. PubMed DOI PMC

Poulard C., Noureddine L.M., Pruvost L., Le Romancer M. Structure, Activity, and Function of the Protein Lysine Methyltransferase G9a. Life. 2021;11:1082. doi: 10.3390/life11101082. PubMed DOI PMC

Eisenberg C.A., Eisenberg L.M. G9a and G9a-Like Histone Methyltransferases and Their Effect on Cell Phenotype, Embryonic Development, and Human Disease. In: Jurga S., Barciszewski J., editors. The DNA, RNA, and Histone Methylomes. Springer International Publishing; Cham, Switzerland: 2019. pp. 399–433.

Lavin D.P., Tiwari V.K. Unresolved Complexity in the Gene Regulatory Network Underlying EMT. Front. Oncol. 2020;10:554. doi: 10.3389/fonc.2020.00554. PubMed DOI PMC

Nagrath S., Sequist L.V., Maheswaran S., Bell D.W., Irimia D., Ulkus L., Smith M.R., Kwak E.L., Digumarthy S., Muzikansky A., et al. Isolation of Rare Circulating Tumour Cells in Cancer Patients by Microchip Technology. Nature. 2007;450:1235–1239. doi: 10.1038/nature06385. PubMed DOI PMC

Yu M., Bardia A., Wittner B.S., Stott S.L., Smas M.E., Ting D.T., Isakoff S.J., Ciciliano J.C., Wells M.N., Shah A.M., et al. Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science. 2013;339:580–584. doi: 10.1126/science.1228522. PubMed DOI PMC

Yu M., Stott S., Toner M., Maheswaran S., Haber D.A. Circulating Tumor Cells: Approaches to Isolation and Characterization. J. Cell Biol. 2011;192:373–382. doi: 10.1083/jcb.201010021. PubMed DOI PMC

Cristofanilli M., Budd G.T., Ellis M.J., Stopeck A., Matera J., Miller M.C., Reuben J.M., Doyle G.V., Allard W.J., Terstappen L.W.M.M., et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004;351:781–791. doi: 10.1056/NEJMoa040766. PubMed DOI

Diaz L.A., Bardelli A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J. Clin. Oncol. 2014;32:579–586. doi: 10.1200/JCO.2012.45.2011. PubMed DOI PMC

Schwarzenbach H., Hoon D.S.B., Pantel K. Cell-Free Nucleic Acids as Biomarkers in Cancer Patients. Nat. Rev. Cancer. 2011;11:426–437. doi: 10.1038/nrc3066. PubMed DOI

Siravegna G., Marsoni S., Siena S., Bardelli A. Integrating Liquid Biopsies into the Management of Cancer. Nat. Rev. Clin. Oncol. 2017;14:531–548. doi: 10.1038/nrclinonc.2017.14. PubMed DOI

Heitzer E., Ulz P., Geigl J.B. Circulating Tumor DNA as a Liquid Biopsy for Cancer. Clin. Chem. 2015;61:112–123. doi: 10.1373/clinchem.2014.222679. PubMed DOI

Sparano J.A., Gray R.J., Makower D.F., Pritchard K.I., Albain K.S., Hayes D.F., Geyer C.E., Dees E.C., Goetz M.P., Olson J.A., et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018;379:111–121. doi: 10.1056/NEJMoa1804710. PubMed DOI PMC

Paik S., Shak S., Tang G., Kim C., Baker J., Cronin M., Baehner F.L., Walker M.G., Watson D., Park T., et al. A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. N. Engl. J. Med. 2004;351:2817–2826. doi: 10.1056/NEJMoa041588. PubMed DOI

Blok E.J., van de Velde C.J., Smit V.T. 70-Gene Signature in Early-Stage Breast Cancer. N. Engl. J. Med. 2016;375:2199. doi: 10.1056/nejmc1612048. PubMed DOI

Wirapati P., Sotiriou C., Kunkel S., Farmer P., Pradervand S., Haibe-Kains B., Desmedt C., Ignatiadis M., Sengstag T., Schütz F., et al. Meta-Analysis of Gene Expression Profiles in Breast Cancer: Toward a Unified Understanding of Breast Cancer Subtyping and Prognosis Signatures. Breast Cancer Res. 2008;10:R65. doi: 10.1186/bcr2124. PubMed DOI PMC

Denkert C., Loibl S., Noske A., Roller M., Müller B.M., Komor M., Budczies J., Darb-Esfahani S., Kronenwett R., Hanusch C., et al. Tumor-Associated Lymphocytes as an Independent Predictor of Response to Neoadjuvant Chemotherapy in Breast Cancer. J. Clin. Oncol. 2010;28:105–113. doi: 10.1200/JCO.2009.23.7370. PubMed DOI

Schalper K.A., Velcheti V., Carvajal D., Wimberly H., Brown J., Pusztai L., Rimm D.L. In Situ Tumor PD-L1 mRNA Expression Is Associated with Increased TILs and Better Outcome in Breast Carcinomas. Clin Cancer Res. 2014;20:2773–2782. doi: 10.1158/1078-0432.CCR-13-2702. PubMed DOI

Loi S., Sirtaine N., Piette F., Salgado R., Viale G., Van Eenoo F., Rouas G., Francis P., Crown J.P.A., Hitre E., et al. Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin with Doxorubicin-Based Chemotherapy: BIG 02-98. J. Clin. Oncol. 2013;31:860–867. doi: 10.1200/JCO.2011.41.0902. PubMed DOI

Schmid P., Adams S., Rugo H.S., Schneeweiss A., Barrios C.H., Iwata H., Diéras V., Hegg R., Im S.-A., Shaw Wright G., et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018;379:2108–2121. doi: 10.1056/NEJMoa1809615. PubMed DOI

Acheampong D.O. Bispecific Antibody (bsAb) Construct Formats and Their Application in Cancer Therapy. Protein Pept. Lett. 2019;26:479–493. doi: 10.2174/0929866526666190311163820. PubMed DOI

Farhangnia P., Ghomi S.M., Akbarpour M., Delbandi A.-A. Bispecific Antibodies Targeting CTLA-4: Game-Changer Troopers in Cancer Immunotherapy. Front. Immunol. 2023;14:1155778. doi: 10.3389/fimmu.2023.1155778. PubMed DOI PMC

Lan H.-R., Chen M., Yao S.-Y., Chen J.-X., Jin K.-T. Bispecific Antibodies Revolutionizing Breast Cancer Treatment: A Comprehensive Overview. Front. Immunol. 2023;14:1266450. doi: 10.3389/fimmu.2023.1266450. PubMed DOI PMC

Klein C., Brinkmann U., Reichert J.M., Kontermann R.E. The Present and Future of Bispecific Antibodies for Cancer Therapy. Nat. Rev. Drug Discov. 2024;23:301–319. doi: 10.1038/s41573-024-00896-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...