Triphenyl Phosphate Alters Methyltransferase Expression and Induces Genome-Wide Aberrant DNA Methylation in Zebrafish Larvae

. 2024 Sep 16 ; 37 (9) : 1549-1561. [epub] 20240829

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39205618

Emerging environmental contaminants, organophosphate flame retardants (OPFRs), pose significant threats to ecosystems and human health. Despite numerous studies reporting the toxic effects of OPFRs, research on their epigenetic alterations remains limited. In this study, we investigated the effects of exposure to 2-ethylhexyl diphenyl phosphate (EHDPP), tricresyl phosphate (TMPP), and triphenyl phosphate (TPHP) on DNA methylation patterns during zebrafish embryonic development. We assessed general toxicity and morphological changes, measured global DNA methylation and hydroxymethylation levels, and evaluated DNA methyltransferase (DNMT) enzyme activity, as well as mRNA expression of DNMTs and ten-eleven translocation (TET) methylcytosine dioxygenase genes. Additionally, we analyzed genome-wide methylation patterns in zebrafish larvae using reduced-representation bisulfite sequencing. Our morphological assessment revealed no general toxicity, but a statistically significant yet subtle decrease in body length following exposure to TMPP and EHDPP, along with a reduction in head height after TPHP exposure, was observed. Eye diameter and head width were unaffected by any of the OPFRs. There were no significant changes in global DNA methylation levels in any exposure group, and TMPP showed no clear effect on DNMT expression. However, EHDPP significantly decreased only DNMT1 expression, while TPHP exposure reduced the expression of several DNMT orthologues and TETs in zebrafish larvae, leading to genome-wide aberrant DNA methylation. Differential methylation occurred primarily in introns (43%) and intergenic regions (37%), with 9% and 10% occurring in exons and promoter regions, respectively. Pathway enrichment analysis of differentially methylated region-associated genes indicated that TPHP exposure enhanced several biological and molecular functions corresponding to metabolism and neurological development. KEGG enrichment analysis further revealed TPHP-mediated potential effects on several signaling pathways including TGFβ, cytokine, and insulin signaling. This study identifies specific changes in DNA methylation in zebrafish larvae after TPHP exposure and brings novel insights into the epigenetic mode of action of TPHP.

Zobrazit více v PubMed

van der Veen I.; de Boer J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88 (10), 1119–1153. 10.1016/j.chemosphere.2012.03.067. PubMed DOI

Mitro S. D.; Dodson R. E.; Singla V.; Adamkiewicz G.; Elmi A. F.; Tilly M. K.; Zota A. R. Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-Analysis of US Studies. Environ. Sci. Technol. 2016, 50 (19), 10661–10672. 10.1021/acs.est.6b02023. PubMed DOI PMC

Rantakokko P.; Kumar E.; Braber J.; Huang T.; Kiviranta H.; Cequier E.; Thomsen C. Concentrations of Brominated and Phosphorous Flame Retardants in Finnish House Dust and Insights into Children’s Exposure. Chemosphere 2019, 223, 99–107. 10.1016/j.chemosphere.2019.02.027. PubMed DOI

Blum A.; Behl M.; Birnbaum L. S.; Diamond M. L.; Phillips A.; Singla V.; Sipes N. S.; Stapleton H. M.; Venier M. Organophosphate Ester Flame Retardants: Are They a Regrettable Substitution for Polybrominated Diphenyl Ethers?. Environ. Sci. Technol. Lett. 2019, 6 (11), 638–649. 10.1021/acs.estlett.9b00582. PubMed DOI PMC

Pantelaki I.; Voutsa D. Organophosphate Flame Retardants (OPFRs): A Review on Analytical Methods and Occurrence in Wastewater and Aquatic Environment. Sci. Total Environ. 2019, 649, 247–263. 10.1016/j.scitotenv.2018.08.286. PubMed DOI

Harrad S.; De Wit C. A.; Abdallah M. A. E.; Bergh C.; Björklund J. A.; Covaci A.; Darnerud P. O.; De Boer J.; Diamond M.; Huber S.; Leonards P.; Mandalakis M.; Östman C.; Haug L. S.; Thomsen C.; Webster T. F. Indoor Contamination with Hexabromocyclododecanes, Polybrominated Diphenyl Ethers, and Perfluoroalkyl Compounds: An Important Exposure Pathway for People?. Environ. Sci. Technol. 2010, 44 (9), 3221–3231. 10.1021/es903476t. PubMed DOI

Schreder E. D.; Uding N.; La Guardia M. J. Inhalation a Significant Exposure Route for Chlorinated Organophosphate Flame Retardants. Chemosphere 2016, 150, 499–504. 10.1016/j.chemosphere.2015.11.084. PubMed DOI

Makinen M. S. E.; Makinen M. R. A.; Koistinen J. T. B.; Pasanen A. L.; Pasanen P. O.; Kalliokoski P. J.; Korpi A. M. Respiratory and Dermal Exposure to Organophosphorus Flame Retardants and Tetrabromobisphenol A at Five Work Environments. Environ. Sci. Technol. 2009, 43 (3), 941–947. 10.1021/es802593t. PubMed DOI

Bajard L.; Melymuk L.; Blaha L. Prioritization of Hazards of Novel Flame Retardants Using the Mechanistic Toxicology Information from ToxCast and Adverse Outcome Pathways. Environmental Sciences Europe. 2019, 31, 14. 10.1186/s12302-019-0195-z. DOI

Guo J.; Riley K. W.; Durham T.; Margolis A. E.; Wang S.; Perera F.; Herbstman J. B. Association Studies of Environmental Exposures, DNA Methylation and Children’s Cognitive, Behavioral, and Mental Health Problems. Front. Genet. 2022, 13, 871820. 10.3389/fgene.2022.871820. PubMed DOI PMC

Omichessan H.; Perduca V.; Polidoro S.; Kvaskoff M.; Truong T.; Cano-Sancho G.; Antignac J. P.; Baglietto L.; Mancini F. R.; Severi G. Associations between Plasma Levels of Brominated Flame Retardants and Methylation of DNA from Peripheral Blood: A Cross-Sectional Study in a Cohort of French Women. Environ. Res. 2022, 210, 112788. 10.1016/j.envres.2022.112788. PubMed DOI

Kim S.; Cho Y. H.; Won S.; Ku J. L.; Moon H. B.; Park J.; Choi G.; Kim S.; Choi K. Maternal Exposures to Persistent Organic Pollutants Are Associated with DNA Methylation of Thyroid Hormone-Related Genes in Placenta Differently by Infant Sex. Environ. Int. 2019, 130, 104956. 10.1016/j.envint.2019.104956. PubMed DOI

Soubry A.; Hoyo C.; Butt C. M.; Fieuws S.; Price T. M.; Murphy S. K.; Stapleton H. M. Human Exposure to Flame-Retardants Is Associated with Aberrant DNA Methylation at Imprinted Genes in Sperm. Environ. Epigenetics 2017, 3 (1), 1–13. 10.1093/eep/dvx003. PubMed DOI PMC

Lind L.; Penell J.; Luttropp K.; Nordfors L.; Syvänen A.-C.; Axelsson T.; Salihovic S.; van Bavel B.; Fall T.; Ingelsson E.; Lind P. M. Global DNA Hypermethylation Is Associated with High Serum Levels of Persistent Organic Pollutants in an Elderly Population. Environ. Int. 2013, 59, 456–461. 10.1016/j.envint.2013.07.008. PubMed DOI

Bird A. DNA Methylation Patterns and Epigenetic Memory. Genes Dev. 2002, 16, 6–21. 10.1101/gad.947102. PubMed DOI

Edwards J. R.; Yarychkivska O.; Boulard M.; Bestor T. H. DNA Methylation and DNA Methyltransferases. Epigenetics and Chromatin 2017, 10, 23. 10.1186/s13072-017-0130-8. PubMed DOI PMC

Ito S.; Shen L.; Dai Q.; Wu S. C.; Collins L. B.; Swenberg J. A.; He C.; Zhang Y. Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine. Science (80-.). 2011, 333 (6047), 1300–1303. 10.1126/science.1210597. PubMed DOI PMC

Agrawal A.; Murphy R. F.; Agrawal D. K. DNA Methylation in Breast and Colorectal Cancers. Mod. Pathol. 2007, 20 (7), 711–721. 10.1038/modpathol.3800822. PubMed DOI

Eden A.; Gaudet F.; Waghmare A.; Jaenisch R. Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. Science 2003, 300 (5618), 455. 10.1126/science.1083557. PubMed DOI

Jones P. A.; Baylin S. B. The Fundamental Role of Epigenetic Events in Cancer. Nat. Rev. Genet. 2002, 3 (6), 415–428. 10.1038/nrg816. PubMed DOI

Kumar S.; Chinnusamy V.; Mohapatra T. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front. Genet. 2018, 9, 429871 10.3389/fgene.2018.00640. PubMed DOI PMC

Maunakea A. K.; Nagarajan R. P.; Bilenky M.; Ballinger T. J.; D'Souza C.; Fouse S. D.; Johnson B. E.; Hong C.; Nielsen C.; Zhao Y.; Turecki G.; Delaney A.; Varhol R.; Thiessen N.; Shchors K.; Heine V. M.; Rowitch D. H.; Xing X.; Fiore C.; Schillebeeckx M.; Jones S. J. M.; Haussler D.; Marra M. A.; Hirst M.; Wang T.; Costello J. F. Conserved Role of Intragenic DNA Methylation in Regulating Alternative Promoters. Nature 2010, 466 (7303), 253–257. 10.1038/nature09165. PubMed DOI PMC

Tekola-Ayele F.; Zeng X.; Ouidir M.; Workalemahu T.; Zhang C.; Delahaye F.; Wapner R. DNA Methylation Loci in Placenta Associated with Birthweight and Expression of Genes Relevant for Early Development and Adult Diseases. Clin. Epigenetics 2020, 12 (1), 78. 10.1186/s13148-020-00873-x. PubMed DOI PMC

Tobi E. W.; Slieker R. C.; Luijk R.; Dekkers K. F.; Stein A. D.; Xu K. M.; Slagboom P. E.; van Zwet E. W.; Lumey L. H.; Heijmans B. T. DNA Methylation as a Mediator of the Association between Prenatal Adversity and Risk Factors for Metabolic Disease in Adulthood. Sci. Adv. 2018, 4 (1), eaao4364. 10.1126/sciadv.aao4364. PubMed DOI PMC

Lapehn S.; Paquette A. G. The Placental Epigenome as a Molecular Link Between Prenatal Exposures and Fetal Health Outcomes Through the DOHaD Hypothesis. Curr. Environ. Heal. Reports 2022, 9 (3), 490–501. 10.1007/s40572-022-00354-8. PubMed DOI PMC

Keil K. P.; Lein P. J. DNA Methylation: A Mechanism Linking Environmental Chemical Exposures to Risk of Autism Spectrum Disorders?. Environmental Epigenetics 2016, 2, dvv012. 10.1093/eep/dvv012. PubMed DOI PMC

Yin R.; Mo J.; Dai J.; Wang H. Nickel(II) Inhibits Tet-Mediated 5-Methylcytosine Oxidation by High Affinity Displacement of the Cofactor Iron(II). ACS Chem. Biol. 2017, 12 (6), 1494–1498. 10.1021/acschembio.7b00261. PubMed DOI

Zhao B.; Yang Y.; Wang X.; Chong Z.; Yin R.; Song S. H.; Zhao C.; Li C.; Huang H.; Sun B. F.; Wu D.; Jin K. X.; Song M.; Zhu B. Z.; Jiang G.; Rendtlew Danielsen J. M.; Xu G. L.; Yang Y. G.; Wang H. Redox-Active Quinones Induces Genome-Wide DNA Methylation Changes by an Iron-Mediated and Tet-Dependent Mechanism. Nucleic Acids Res. 2014, 42 (3), 1593–1605. 10.1093/nar/gkt1090. PubMed DOI PMC

Li Z.; Lyu C.; Ren Y.; Wang H. Role of TET Dioxygenases and DNA Hydroxymethylation in Bisphenols-Stimulated Proliferation of Breast Cancer Cells. Environ. Health Perspect. 2020, 128 (2), 27008. 10.1289/EHP5862. PubMed DOI PMC

Yin R.; Mao S. Q.; Zhao B.; Chong Z.; Yang Y.; Zhao C.; Zhang D.; Huang H.; Gao J.; Li Z.; Jiao Y.; Li C.; Liu S.; Wu D.; Gu W.; Yang Y. G.; Xu G. L.; Wang H. Ascorbic Acid Enhances Tet-Mediated 5-Methylcytosine Oxidation and Promotes DNA Demethylation in Mammals. J. Am. Chem. Soc. 2013, 135 (28), 10396–10403. 10.1021/ja4028346. PubMed DOI

Lillycrop K. A.; Burdge G. C. Epigenetic Changes in Early Life and Future Risk of Obesity. Int. J. Obes. 2011, 35 (1), 72–83. 10.1038/ijo.2010.122. PubMed DOI

Kamstra J. H.; Aleström P.; Kooter J. M.; Legler J. Zebrafish as a Model to Study the Role of DNA Methylation in Environmental Toxicology. Environ. Sci. Pollut. Res. 2015, 22 (21), 16262–16276. 10.1007/s11356-014-3466-7. PubMed DOI

Williams T. D.; Mirbahai L.; Chipman J. K. The Toxicological Application of Transcriptomics and Epigenomics in Zebrafish and Other Teleosts. Brief. Funct. Genomics 2014, 13 (2), 157–171. 10.1093/bfgp/elt053. PubMed DOI

Water Quality - Determination of the Acute Lethal Toxicity of Substances to a Freshwater Fish (Brachydanio Rerio Hamilton-Buchanan (Teleostei, Cyprinidae)) - Part 1: Static Method; ISO, 2001.

Kimmel C. B.; Ballard W. W.; Kimmel S. R.; Ullmann B.; Schilling T. F. Stages of Embryonic Development of the Zebrafish. Dev. Dyn. 1995, 203 (3), 253–310. 10.1002/aja.1002030302. PubMed DOI

Alzualde A.; Behl M.; Sipes N. S.; Hsieh J. H.; Alday A.; Tice R. R.; Paules R. S.; Muriana A.; Quevedo C. Toxicity Profiling of Flame Retardants in Zebrafish Embryos Using a Battery of Assays for Developmental Toxicity, Neurotoxicity, Cardiotoxicity and Hepatotoxicity toward Human Relevance. Neurotoxicol. Teratol. 2018, 70, 40–50. 10.1016/j.ntt.2018.10.002. PubMed DOI

Livak K. J.; Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001, 25 (4), 402–408. 10.1006/meth.2001.1262. PubMed DOI

Bolger A. M.; Lohse M.; Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30 (15), 2114–2120. 10.1093/bioinformatics/btu170. PubMed DOI PMC

Volz D. C.; Leet J. K.; Chen A.; Stapleton H. M.; Katiyar N.; Kaundal R.; Yu Y.; Wang Y. Tris(1,3-Dichloro-2-Propyl)Phosphate Induces Genome-Wide Hypomethylation within Early Zebrafish Embryos. Environ. Sci. Technol. 2016, 50 (18), 10255–10263. 10.1021/acs.est.6b03656. PubMed DOI PMC

Shafique S.; Wolpert S. H.; Philbrook N. A.; Winn L. M. Gestational Exposure to Triphenyl Phosphate Induces Epigenetic Modifications in C57Bl/6 Fetal Liver. Birth Defects Res. 2023, 115 (3), 338–347. 10.1002/bdr2.2121. PubMed DOI

Lou S.; Lee H.-M.; Qin H.; Li J.-W.; Gao Z.; Liu X.; Chan L. L; KL Lam V.; So W.-Y.; Wang Y.; Lok S.; Wang J.; Ma R. C.; Tsui S. K.-W.; Chan J. C.; Chan T.-F.; Yip K. Y Whole-Genome Bisulfite Sequencing of Multiple Individuals Reveals Complementary Roles of Promoter and Gene Body Methylation in Transcriptional Regulation. Genome Biol. 2014, 15 (7), 408. 10.1186/s13059-014-0408-0. PubMed DOI PMC

Yang X.; Han H.; DeCarvalho D. D.; Lay F. D.; Jones P. A.; Liang G. Gene Body Methylation Can Alter Gene Expression and Is a Therapeutic Target in Cancer. Cancer Cell 2014, 26 (4), 577–590. 10.1016/j.ccr.2014.07.028. PubMed DOI PMC

Rauch T. A.; Wu X.; Zhong X.; Riggs A. D.; Pfeifer G. P. A Human B Cell Methylome at 100-Base Pair Resolution. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (3), 671–678. 10.1073/pnas.0812399106. PubMed DOI PMC

Ball M. P.; Li J. B.; Gao Y.; Lee J. H.; Leproust E. M.; Park I. H.; Xie B.; Daley G. Q.; Church G. M. Targeted and Genome-Scale Strategies Reveal Gene-Body Methylation Signatures in Human Cells. Nat. Biotechnol. 2009, 27 (4), 361–368. 10.1038/nbt.1533. PubMed DOI PMC

Arechederra M.; Daian F.; Yim A.; Bazai S. K.; Richelme S.; Dono R.; Saurin A. J.; Habermann B. H.; Maina F. Hypermethylation of Gene Body CpG Islands Predicts High Dosage of Functional Oncogenes in Liver Cancer. Nat. Commun. 2018, 9 (1), 1–16. 10.1038/s41467-018-05550-5. PubMed DOI PMC

Wang D.; Yan S.; Yan J.; Teng M.; Meng Z.; Li R.; Zhou Z.; Zhu W. Effects of Triphenyl Phosphate Exposure during Fetal Development on Obesity and Metabolic Dysfunctions in Adult Mice: Impaired Lipid Metabolism and Intestinal Dysbiosis. Environ. Pollut. 2019, 246, 630–638. 10.1016/j.envpol.2018.12.053. PubMed DOI

Dahlman I.; Sinha I.; Gao H.; Brodin D.; Thorell A.; Rydén M.; Andersson D. P.; Henriksson J.; Perfilyev A.; Ling C.; Dahlman-Wright K.; Arner P. The Fat Cell Epigenetic Signature in Post-Obese Women Is Characterized by Global Hypomethylation and Differential DNA Methylation of Adipogenesis Genes. Int. J. Obes. 2015, 39 (6), 910–919. 10.1038/ijo.2015.31. PubMed DOI

Liu H.; Cui H.; Huang Y.; Gao S.; Tao S.; Hu J.; Wan Y. Xenobiotics Targeting Cardiolipin Metabolism to Promote Thrombosis in Zebrafish. Environ. Sci. Technol. 2021, 55 (6), 3855–3866. 10.1021/acs.est.0c08068. PubMed DOI

Leow S. C.; Poschmann J.; Too P. G.; Yin J.; Joseph R.; McFarlane C.; Dogra S.; Shabbir A.; Ingham P. W.; Prabhakar S.; Leow M. K. S.; Lee Y. S.; Ng K. L.; Chong Y. S.; Gluckman P. D.; Stünkel W. The Transcription Factor SOX6 Contributes to the Developmental Origins of Obesity by Promoting Adipogenesis. Dev. 2016, 143 (6), 950–961. 10.1242/dev.131573. PubMed DOI

Lee J.; Kim M.-S. The Role of GSK3 in Glucose Homeostasis and the Development of Insulin Resistance. Diabetes Res. Clin. Pract. 2007, 77 (3), S49–S57. 10.1016/j.diabres.2007.01.033. PubMed DOI

Tzavlaki K.; Moustakas A. TGF-B Signaling. Biomolecules 2020, 10 (3), 487. 10.3390/biom10030487. PubMed DOI PMC

Totsuka Y.; Tabuchi M.; Kojima I.; Eto Y.; Shibai H.; Ogata E. Stimulation of Insulin Secretion by Transforming Growth Factor- β. Biochem. Biophys. Res. Commun. 1989, 158 (3), 1060–1065. 10.1016/0006-291X(89)92829-5. PubMed DOI

Brown M. L.; Schneyer A. L. Emerging Roles for the TGFβ Family in Pancreatic β-Cell Homeostasis. Trends Endocrinol. Metab. 2010, 21 (7), 441–448. 10.1016/j.tem.2010.02.008. PubMed DOI PMC

Grewal I. S.; Grewal K. D.; Wong F. S.; Wang H.; Picarella D. E.; Janeway C. A.; Flavell R. A. Expression of Transgene Encoded TGF-β in Islets Prevents Autoimmune Diabetes in NOD Mice by a Local Mechanism. J. Autoimmun. 2002, 19 (1–2), 9–22. 10.1006/jaut.2002.0599. PubMed DOI

Moritani M.; Yamasaki S.; Kagami M.; Suzuki T.; Yamaoka T.; Sano T.; Hata J. I.; Itakura M. Hypoplasia of Endocrine and Exocrine Pancreas in Homozygous Transgenic TGF-B1. Mol. Cell. Endocrinol. 2005, 229 (1–2), 175–184. 10.1016/j.mce.2004.08.007. PubMed DOI

Negi C. K.; Bajard L.; Kohoutek J.; Blaha L. An Adverse Outcome Pathway Based in Vitro Characterization of Novel Flame Retardants-Induced Hepatic Steatosis. Environ. Pollut. 2021, 289, 117855 10.1016/j.envpol.2021.117855. PubMed DOI

Hao Z.; Zhang Z.; Lu D.; Ding B.; Shu L.; Zhang Q.; Wang C. Organophosphorus Flame Retardants Impair Intracellular Lipid Metabolic Function in Human Hepatocellular Cells. Chem. Res. Toxicol. 2019, 32 (6), 1250–1258. 10.1021/acs.chemrestox.9b00058. PubMed DOI

An J.; Jiang J.; Tang W.; Zhong Y.; Ren G.; Shang Y.; Yu Z. Lipid Metabolic Disturbance Induced by Triphenyl Phosphate and Hydroxy Metabolite in HepG2 Cells. Ecotoxicol. Environ. Saf. 2023, 262, 115160. 10.1016/j.ecoenv.2023.115160. PubMed DOI

Du Z.; Zhang Y.; Wang G.; Peng J.; Wang Z.; Gao S. TPhP Exposure Disturbs Carbohydrate Metabolism, Lipid Metabolism, and the DNA Damage Repair System in Zebrafish Liver. Sci. Rep. 2016, 6 (1), 1–10. 10.1038/srep21827. PubMed DOI PMC

Zhang Q.; Zheng S.; Shi X.; Luo C.; Huang W.; Lin H.; Peng J.; Tan W.; Wu K. Neurodevelopmental Toxicity of Organophosphate Flame Retardant Triphenyl Phosphate (TPhP) on Zebrafish (Danio Rerio) at Different Life Stages. Environ. Int. 2023, 172, 107745 10.1016/j.envint.2023.107745. PubMed DOI

Zhang Y. T.; Chen R.; Wang F.; Huang Z.; He S.; Chen J.; Mu J. Potential Involvement of the Microbiota-Gut-Brain Axis in the Neurotoxicity of Triphenyl Phosphate (TPhP) in the Marine Medaka (Oryzias Melastigma) Larvae. Sci. Total Environ. 2022, 817, 152945 10.1016/j.scitotenv.2022.152945. PubMed DOI

Hong X.; Chen R.; Hou R.; Yuan L.; Zha J. Triphenyl Phosphate (TPHP)-Induced Neurotoxicity in Adult Male Chinese Rare Minnows (Gobiocypris Rarus). Environ. Sci. Technol. 2018, 52 (20), 11895–11903. 10.1021/acs.est.8b04079. PubMed DOI

Shi Q.; Wang M.; Shi F.; Yang L.; Guo Y.; Feng C.; Liu J.; Zhou B. Developmental Neurotoxicity of Triphenyl Phosphate in Zebrafish Larvae. Aquat. Toxicol. 2018, 203, 80–87. 10.1016/j.aquatox.2018.08.001. PubMed DOI

Zhong X.; Yu Y.; Wang C.; Zhu Q.; Wu J.; Ke W.; Ji D.; Niu C.; Yang X.; Wei Y. Hippocampal Proteomic Analysis Reveals the Disturbance of Synaptogenesis and Neurotransmission Induced by Developmental Exposure to Organophosphate Flame Retardant Triphenyl Phosphate. J. Hazard. Mater. 2021, 404, 124111 10.1016/j.jhazmat.2020.124111. PubMed DOI

Zhang X.; Zhou Q.; Li X.; Zou W.; Hu X. Integrating Omics and Traditional Analyses to Profile the Synergistic Toxicity of Graphene Oxide and Triphenyl Phosphate. Environ. Pollut. 2020, 263, 114473 10.1016/j.envpol.2020.114473. PubMed DOI

Ye L.; Zhang X.; Wang P.; Zhang Y.; He S.; Li Y.; Li S.; Liang K.; Liao S.; Gao Y.; Zhou S.; Peng Q. Low Concentration Triphenyl Phosphate Fuels Proliferation and Migration of Hepatocellular Carcinoma Cells. Environ. Toxicol. 2022, 37 (10), 2445–2459. 10.1002/tox.23609. PubMed DOI

Yue J.; Sun X.; Duan X.; Sun C.; Chen H.; Sun H.; Zhang L. Triphenyl Phosphate Proved More Potent than Its Metabolite Diphenyl Phosphate in Inducing Hepatic Insulin Resistance through Endoplasmic Reticulum Stress. Environ. Int. 2023, 172, 107749 10.1016/j.envint.2023.107749. PubMed DOI

Sanchez O. F.; Lee J.; Yu King Hing N.; Kim S. E.; Freeman J. L.; Yuan C. Lead (Pb) Exposure Reduces Global DNA Methylation Level by Non-Competitive Inhibition and Alteration of Dnmt Expression. Metallomics 2017, 9 (2), 149–160. 10.1039/C6MT00198J. PubMed DOI

Song C.-X.; He C. Potential functional roles of DNA demethylation intermediates. Trends Biochem Sci. 2013, 38, 480. 10.1016/j.tibs.2013.07.003. PubMed DOI PMC

Takayama K.; Shimoda N.; Takanaga S.; Hozumi S.; Kikuchi Y. Expression Patterns of Dnmt3aa, Dnmt3ab, and Dnmt4 during Development and Fin Regeneration in Zebrafish. Gene Expr. Patterns 2014, 14 (2), 105–110. 10.1016/j.gep.2014.01.005. PubMed DOI

Tang D.; Zheng S.; Zheng Z.; Liu C.; Zhang J.; Yan R.; Wu C.; Zuo N.; Wu L.; Xu H.; Liu S.; He Y. Dnmt1 Is Required for the Development of Auditory Organs via Cell Cycle Arrest and Fgf Signalling. Cell Prolif. 2022, 55 (5), e13225. 10.1111/cpr.13225. PubMed DOI PMC

Ni A.; Fang L.; Xi M.; Li J.; Qian Q.; Wang Z.; Wang X.; Wang H.; Yan J. Neurotoxic Effects of 2-Ethylhexyl Diphenyl Phosphate Exposure on Zebrafish Larvae: Insight into Inflammation-Driven Changes in Early Motor Behavior. Sci. Total Environ. 2024, 915, 170131 10.1016/j.scitotenv.2024.170131. PubMed DOI

Yi X.; Qin H.; Li G.; Kong R.; Liu C. Isomer-Specific Cardiotoxicity Induced by Tricresyl Phosphate in Zebrafish Embryos/Larvae. J. Hazard. Mater. 2024, 474, 134753 10.1016/j.jhazmat.2024.134753. PubMed DOI

Shi Q.; Tsui M. M. P.; Hu C.; Lam J. C. W.; Zhou B.; Chen L. Acute Exposure to Triphenyl Phosphate (TPhP) Disturbs Ocular Development and Muscular Organization in Zebrafish Larvae. Ecotoxicol. Environ. Saf. 2019, 179, 119–126. 10.1016/j.ecoenv.2019.04.056. PubMed DOI

Shi Q.; Wang Z.; Chen L.; Fu J.; Han J.; Hu B.; Zhou B. Optical Toxicity of Triphenyl Phosphate in Zebrafish Larvae. Aquat. Toxicol. 2019, 210, 139–147. 10.1016/j.aquatox.2019.02.024. PubMed DOI

Qi Z.; Chen M.; Song Y.; Wang X.; Li B.; Chen Z. F.; Tsang S. Y.; Cai Z. Acute Exposure to Triphenyl Phosphate Inhibits the Proliferation and Cardiac Differentiation of Mouse Embryonic Stem Cells and Zebrafish Embryos. J. Cell. Physiol. 2019, 234 (11), 21235–21248. 10.1002/jcp.28729. PubMed DOI

Rai K.; Jafri I. F.; Chidester S.; James S. R.; Karpf A. R.; Cairns B. R.; Jones D. A. Dnmt3 and G9a Cooperate for Tissue-Specific Development in Zebrafish. J. Biol. Chem. 2010, 285 (6), 4110–4121. 10.1074/jbc.M109.073676. PubMed DOI PMC

Germain L.; Winn L. M. The Flame Retardant Triphenyl Phosphate Alters the Epigenome of Embryonic Cells in an Aquatic in Vitro Model. J. Appl. Toxicol. 2024, 44 (7), 965–977. 10.1002/jat.4589. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...