Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
Grant support
ZIA AG000446
Intramural NIH HHS - United States
PubMed
39211330
PubMed Central
PMC11358824
DOI
10.1093/nargab/lqae116
PII: lqae116
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Centre for Molecular Medicine and Biobanking University of Malta MSD 2080 Msida Malta
See more in PubMed
Tani H., Mizutani R., Salam K.A., Tano K., Ijiri K., Wakamatsu A., Isogai T., Suzuki Y., Akimitsu N.. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 2012; 22:947–956. PubMed PMC
Churchman L.S., Weissman J.S.. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature. 2011; 469:368–373. PubMed PMC
Rabani M., Levin J.Z., Fan L., Adiconis X., Raychowdhury R., Garber M., Gnirke A., Nusbaum C., Hacohen N., Friedman N.et al. .. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 2011; 29:436–442. PubMed PMC
Kwak H., Fuda N.J., Core L.J., Lis J.T.. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science. 2013; 339:950–953. PubMed PMC
Duffy E.E., Rutenberg-Schoenberg M., Stark C.D., Kitchen R.R., Gerstein M.B., Simon M.D.. Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell. 2015; 59:858–866. PubMed PMC
Schwalb B., Michel M., Zacher B., Frühauf K., Demel C., Tresch A., Gagneur J., Cramer P.. TT-seq maps the human transient transcriptome. Science. 2016; 352:1225–1228. PubMed
Herzog V.A., Reichholf B., Neumann T., Rescheneder P., Bhat P., Burkard T.R., Wlotzka W., von Haeseler A., Zuber J., Ameres S.L.. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods. 2017; 14:1198–1204. PubMed PMC
Schofield J.A., Duffy E.E., Kiefer L., Sullivan M.C., Simon M.D.. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods. 2018; 15:221–225. PubMed PMC
Baptista M.A.P., Dölken L.. RNA dynamics revealed by metabolic RNA labeling and biochemical nucleoside conversions. Nat. Methods. 2018; 15:171–172. PubMed
Boileau E., Altmüller J., Naarmann-de Vries I.S., Dieterich C. A comparison of metabolic labeling and statistical methods to infer genome-wide dynamics of RNA turnover. Brief. Bioinform. 2021; 22:bbab219. PubMed PMC
Marasco L.E., Kornblihtt A.R.. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 2023; 24:242–254. PubMed
Schoenberg D.R., Maquat L.E.. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 2012; 13:246–259. PubMed PMC
Garalde D.R., Snell E.A., Jachimowicz D., Sipos B., Lloyd J.H., Bruce M., Pantic N., Admassu T., James P., Warland A.et al. .. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods. 2018; 15:201–206. PubMed
Workman R.E., Tang A.D., Tang P.S., Jain M., Tyson J.R., Razaghi R., Zuzarte P.C., Gilpatrick T., Payne A., Quick J.et al. .. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods. 2019; 16:1297–1305. PubMed PMC
Price A.M., Hayer K.E., McIntyre A.B.R., Gokhale N.S., Abebe J.S., Della Fera A.N., Mason C.E., Horner S.M., Wilson A.C., Depledge D.P.et al. .. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 2020; 11:6016. PubMed PMC
Leger A., Amaral P.P., Pandolfini L., Capitanchik C., Capraro F., Miano V., Migliori V., Toolan-Kerr P., Sideri T., Enright A.J.et al. .. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat. Commun. 2021; 12:7198. PubMed PMC
Pratanwanich P.N., Yao F., Chen Y., Koh C.W.Q., Wan Y.K., Hendra C., Poon P., Goh Y.T., Yap P.M.L., Chooi J.Y.et al. .. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 2021; 39:1394–1402. PubMed
Mulroney L., Birney E., Leonardi T., Nicassio F.. Using nanocompore to identify RNA modifications from direct RNA nanopore sequencing data. Curr Protoc. 2023; 3:e683. PubMed
Liu H., Begik O., Lucas M.C., Ramirez J.M., Mason C.E., Wiener D., Schwartz S., Mattick J.S., Smith M.A., Novoa E.M.. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 2019; 10:4079. PubMed PMC
Lorenz D.A., Sathe S., Einstein J.M., Yeo G.W.. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution. RNA. 2020; 26:19–28. PubMed PMC
Begik O., Lucas M.C., Pryszcz L.P., Ramirez J.M., Medina R., Milenkovic I., Cruciani S., Liu H., Vieira H.G.S., Sas-Chen A.et al. .. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol. 2021; 39:1278–1291. PubMed
Hendra C., Pratanwanich P.N., Wan Y.K., Goh W.S.S., Thiery A., Göke J.. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods. 2022; 19:1590–1598. PubMed PMC
Nguyen T.A., Heng J.W.J., Kaewsapsak P., Kok E.P.L., Stanojević D., Liu H., Cardilla A., Praditya A., Yi Z., Lin M.et al. .. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nat. Methods. 2022; 19:833–844. PubMed
Maier K.C., Gressel S., Cramer P., Schwalb B.. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res. 2020; 30:1332–1344. PubMed PMC
Brown A.-L., Wilkins O.G., Keuss M.J., Hill S.E., Zanovello M., Lee W.C., Bampton A., Lee F.C.Y., Masino L., Qi Y.A.et al. .. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022; 603:131–137. PubMed PMC
Ibrahim F., Oppelt J., Maragkakis M., Mourelatos Z.. TERA-Seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res. 2021; 49:e115. PubMed PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34:3094–3100. PubMed PMC
Howard J., Ruder S.. Universal language model fine-tuning for text classification. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018; 1:328–339.
Paszke A., Gross S., Massa F., Lerer A.. Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019; 32:8024–8035.
Mölder F., Jablonski K.P., Letcher B., Hall M.B., Tomkins-Tinch C.H., Sochat V., Forster J., Lee S., Twardziok S.O., Kanitz A.et al. .. Sustainable data analysis with Snakemake. F1000Res. 2021; 10:33. PubMed PMC
Dölken L., Ruzsics Z., Rädle B., Friedel C.C., Zimmer R., Mages J., Hoffmann R., Dickinson P., Forster T., Ghazal P.et al. .. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA. 2008; 14:1959–1972. PubMed PMC
Eisen T.J., Eichhorn S.W., Subtelny A.O., Lin K.S., McGeary S.E., Gupta S., Bartel D.P.. The dynamics of cytoplasmic mRNA metabolism. Mol. Cell. 2020; 77:786–799. PubMed PMC
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser Ł., Polosukhin I.. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017; 30:5998–6008.
Neumann D., Reddy A.S.N., Ben-Hur A.. RODAN: A fully convolutional architecture for basecalling nanopore RNA sequencing data. BMC Bioinf. 2022; 23:142. PubMed PMC
Pagès-Gallego M., de Ridder J.. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling. Genome Biol. 2023; 24:71. PubMed PMC
LeCun Y., Bengio Y., Hinton G.. Deep learning. Nature. 2015; 521:436–444. PubMed
Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC
Russo J., Heck A.M., Wilusz J., Wilusz C.J.. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods. 2017; 120:39–48. PubMed PMC