Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
ZIA AG000696
Intramural NIH HHS - United States
PubMed
38014155
PubMed Central
PMC10680836
DOI
10.1101/2023.11.17.567581
PII: 2023.11.17.567581
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Quantification of the dynamics of RNA metabolism is essential for understanding gene regulation in health and disease. Existing methods rely on metabolic labeling of nascent RNAs and physical separation or inference of labeling through PCR-generated mutations, followed by short-read sequencing. However, these methods are limited in their ability to identify transient decay intermediates or co-analyze RNA decay with cis-regulatory elements of RNA stability such as poly(A) tail length and modification status, at single molecule resolution. Here we use 5-ethynyl uridine (5EU) to label nascent RNA followed by direct RNA sequencing with nanopores. We developed RNAkinet, a deep convolutional and recurrent neural network that processes the electrical signal produced by nanopore sequencing to identify 5EU-labeled nascent RNA molecules. RNAkinet demonstrates generalizability to distinct cell types and organisms and reproducibly quantifies RNA kinetic parameters allowing the combined interrogation of RNA metabolism and cis-acting RNA regulatory elements.
Central European Institute of Technology Masaryk University 625 00 Brno Czech Republic
Centre for Molecular Medicine and Biobanking University of Malta MSD 2080 Msida Malta
Zobrazit více v PubMed
Tani H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012). PubMed PMC
Churchman L. S. & Weissman J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011). PubMed PMC
Rabani M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011). PubMed PMC
Kwak H., Fuda N. J., Core L. J. & Lis J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013). PubMed PMC
Duffy E. E. et al. Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. Mol. Cell 59, 858–866 (2015). PubMed PMC
Schwalb B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016). PubMed
Herzog V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017). PubMed PMC
Schofield J. A., Duffy E. E., Kiefer L., Sullivan M. C. & Simon M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225 (2018). PubMed PMC
Baptista M. A. P. & Dölken L. RNA dynamics revealed by metabolic RNA labeling and biochemical nucleoside conversions. Nature methods vol. 15 171–172 (2018). PubMed
Boileau E., Altmüller J., Naarmann-de Vries I. S. & Dieterich C. A comparison of metabolic labeling and statistical methods to infer genome-wide dynamics of RNA turnover. Brief. Bioinform. 22, (2021). PubMed PMC
Marasco L. E. & Kornblihtt A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2023). PubMed
Schoenberg D. R. & Maquat L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012). PubMed PMC
Garalde D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018). PubMed
Workman R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019). PubMed PMC
Price A. M. et al. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020). PubMed PMC
Leger A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021). PubMed PMC
Pratanwanich P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021). PubMed
Mulroney L., Birney E., Leonardi T. & Nicassio F. Using Nanocompore to Identify RNA Modifications from Direct RNA Nanopore Sequencing Data. Curr Protoc 3, e683 (2023). PubMed
Liu H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019). PubMed PMC
Lorenz D. A., Sathe S., Einstein J. M. & Yeo G. W. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution. RNA 26, 19–28 (2020). PubMed PMC
Begik O. et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol. 39, 1278–1291 (2021). PubMed
Hendra C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods (2022) doi:10.1038/s41592-022-01666-1. PubMed DOI PMC
Nguyen T. A. et al. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nat. Methods 19, 833–844 (2022). PubMed
Maier K. C., Gressel S., Cramer P. & Schwalb B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res. 30, 1332–1344 (2020). PubMed PMC
Dölken L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008). PubMed PMC
Eisen T. J. et al. The Dynamics of Cytoplasmic mRNA Metabolism. Mol. Cell 77, 786–799.e10 (2020). PubMed PMC
Spigler S. et al. A jamming transition from under- to over-parametrization affects generalization in deep learning. J. Phys. A: Math. Theor. 52, 474001 (2019).
LeCun Y., Bengio Y. & Hinton G. Deep learning. Nature 521, 436–444 (2015). PubMed
O’Shea K. & Nash R. An Introduction to Convolutional Neural Networks. arXiv [cs.NE] (2015).
Neumann D., Reddy A. S. N. & Ben-Hur A. RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data. BMC Bioinformatics 23, 142 (2022). PubMed PMC
Zhuang F. et al. A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2020).
Vaswani A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, (2017).
Pagès-Gallego M. & de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling. Genome Biol. 24, 71 (2023). PubMed PMC
Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Russo J., Heck A. M., Wilusz J. & Wilusz C. J. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 120, 39–48 (2017). PubMed PMC
Brown A.-L. et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603, 131–137 (2022). PubMed PMC
Ibrahim F., Oppelt J., Maragkakis M. & Mourelatos Z. TERA-Seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res. 49, e115 (2021). PubMed PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). PubMed PMC
Paszke A., Gross S., Massa F. & Lerer A. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. (2019).
Mölder F. et al. Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021). PubMed PMC