Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics

. 2023 Nov 17 ; () : . [epub] 20231117

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38014155

Grantová podpora
ZIA AG000696 Intramural NIH HHS - United States

Quantification of the dynamics of RNA metabolism is essential for understanding gene regulation in health and disease. Existing methods rely on metabolic labeling of nascent RNAs and physical separation or inference of labeling through PCR-generated mutations, followed by short-read sequencing. However, these methods are limited in their ability to identify transient decay intermediates or co-analyze RNA decay with cis-regulatory elements of RNA stability such as poly(A) tail length and modification status, at single molecule resolution. Here we use 5-ethynyl uridine (5EU) to label nascent RNA followed by direct RNA sequencing with nanopores. We developed RNAkinet, a deep convolutional and recurrent neural network that processes the electrical signal produced by nanopore sequencing to identify 5EU-labeled nascent RNA molecules. RNAkinet demonstrates generalizability to distinct cell types and organisms and reproducibly quantifies RNA kinetic parameters allowing the combined interrogation of RNA metabolism and cis-acting RNA regulatory elements.

Aktualizováno

PubMed

Zobrazit více v PubMed

Tani H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012). PubMed PMC

Churchman L. S. & Weissman J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373 (2011). PubMed PMC

Rabani M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436–442 (2011). PubMed PMC

Kwak H., Fuda N. J., Core L. J. & Lis J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953 (2013). PubMed PMC

Duffy E. E. et al. Tracking Distinct RNA Populations Using Efficient and Reversible Covalent Chemistry. Mol. Cell 59, 858–866 (2015). PubMed PMC

Schwalb B. et al. TT-seq maps the human transient transcriptome. Science 352, 1225–1228 (2016). PubMed

Herzog V. A. et al. Thiol-linked alkylation of RNA to assess expression dynamics. Nat. Methods 14, 1198–1204 (2017). PubMed PMC

Schofield J. A., Duffy E. E., Kiefer L., Sullivan M. C. & Simon M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods 15, 221–225 (2018). PubMed PMC

Baptista M. A. P. & Dölken L. RNA dynamics revealed by metabolic RNA labeling and biochemical nucleoside conversions. Nature methods vol. 15 171–172 (2018). PubMed

Boileau E., Altmüller J., Naarmann-de Vries I. S. & Dieterich C. A comparison of metabolic labeling and statistical methods to infer genome-wide dynamics of RNA turnover. Brief. Bioinform. 22, (2021). PubMed PMC

Marasco L. E. & Kornblihtt A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242–254 (2023). PubMed

Schoenberg D. R. & Maquat L. E. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13, 246–259 (2012). PubMed PMC

Garalde D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018). PubMed

Workman R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297–1305 (2019). PubMed PMC

Price A. M. et al. Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat. Commun. 11, 6016 (2020). PubMed PMC

Leger A. et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat. Commun. 12, 7198 (2021). PubMed PMC

Pratanwanich P. N. et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat. Biotechnol. 39, 1394–1402 (2021). PubMed

Mulroney L., Birney E., Leonardi T. & Nicassio F. Using Nanocompore to Identify RNA Modifications from Direct RNA Nanopore Sequencing Data. Curr Protoc 3, e683 (2023). PubMed

Liu H. et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 10, 4079 (2019). PubMed PMC

Lorenz D. A., Sathe S., Einstein J. M. & Yeo G. W. Direct RNA sequencing enables m6A detection in endogenous transcript isoforms at base-specific resolution. RNA 26, 19–28 (2020). PubMed PMC

Begik O. et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat. Biotechnol. 39, 1278–1291 (2021). PubMed

Hendra C. et al. Detection of m6A from direct RNA sequencing using a multiple instance learning framework. Nat. Methods (2022) doi:10.1038/s41592-022-01666-1. PubMed DOI PMC

Nguyen T. A. et al. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nat. Methods 19, 833–844 (2022). PubMed

Maier K. C., Gressel S., Cramer P. & Schwalb B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res. 30, 1332–1344 (2020). PubMed PMC

Dölken L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008). PubMed PMC

Eisen T. J. et al. The Dynamics of Cytoplasmic mRNA Metabolism. Mol. Cell 77, 786–799.e10 (2020). PubMed PMC

Spigler S. et al. A jamming transition from under- to over-parametrization affects generalization in deep learning. J. Phys. A: Math. Theor. 52, 474001 (2019).

LeCun Y., Bengio Y. & Hinton G. Deep learning. Nature 521, 436–444 (2015). PubMed

O’Shea K. & Nash R. An Introduction to Convolutional Neural Networks. arXiv [cs.NE] (2015).

Neumann D., Reddy A. S. N. & Ben-Hur A. RODAN: a fully convolutional architecture for basecalling nanopore RNA sequencing data. BMC Bioinformatics 23, 142 (2022). PubMed PMC

Zhuang F. et al. A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2020).

Vaswani A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, (2017).

Pagès-Gallego M. & de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling. Genome Biol. 24, 71 (2023). PubMed PMC

Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC

Russo J., Heck A. M., Wilusz J. & Wilusz C. J. Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods 120, 39–48 (2017). PubMed PMC

Brown A.-L. et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603, 131–137 (2022). PubMed PMC

Ibrahim F., Oppelt J., Maragkakis M. & Mourelatos Z. TERA-Seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res. 49, e115 (2021). PubMed PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018). PubMed PMC

Paszke A., Gross S., Massa F. & Lerer A. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. (2019).

Mölder F. et al. Sustainable data analysis with Snakemake. F1000Res. 10, 33 (2021). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...