• This record comes from PubMed

Amorphous Carbon Nitride Films: Surface and Subsurface Composition and Bonding

. 2024 Sep 17 ; 40 (37) : 19538-19547. [epub] 20240830

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

To obtain quantitative information about the composition and bonding of atoms located at and beyond the analyzed solid surface nondestructively, we applied angle-resolved X-ray photoelectron spectroscopy aided by the maximum entropy method to air-exposed amorphous carbon nitride films deposited by pulsed laser deposition of diamond-like carbon modified by low-energy nitrogen ion bombardment during film growth. We demonstrate that the composition, chemical bonding, and mass density vary significantly from the top surface to a shallow subsurface region. The analyzed samples, in a shallow surface region of ∼1 nm, are composed of oxygen, nitrogen, hydrogen, and mostly carbon in sp2 hybridization. In a deeper region, the C sp3 content increases substantially going to a maximum, whereas the nitrogen percentage decreases to a minimum, then increases, and tends to saturate. Special attention has been paid to in-depth distributions of carbon atoms in trigonal and tetragonal arrangements because they specify numerous physical and chemical properties of carbon-based materials. These results indicate that the interaction of DLC:N surfaces with surroundings can be influenced, barring oxygen and nitrogen, by sp2-bonded carbon atoms located near the surface of the samples. The obtained results can be useful for developing a deeper understanding of the interaction between DLC:N layer surfaces and their surroundings and particularly with living tissue.

See more in PubMed

Jablonski A. Analytical formalism for calculations of parameters needed for quantitative analysis by X-ray photoelectron spectroscopy. Comput. Phys. Commun. 2022, 272, 10823310.1016/j.cpc.2021.108233. DOI

Romanyuk O.; Zemek J.; Houdkova J.; Babcenko O.; Shagieva E.; Beranova K.; Kromka A.; Jiricek P. Effects of monoatomic and cluster bombardment with Ar ion beam on the surface of hydrogenated nanocrystalline diamond. Diam. Relat. Mater. 2023, 133, 10974810.1016/j.diamond.2023.109748. DOI

Takabayashi S.; Motomitsu K.; Takahagi T.; Terayama A.; Okamoto K.; Nakatani T. Qualitative analysis of a diamondlike carbon film by angle-resolved x-ray photoelectron spectroscopy. J. Appl. Phys. 2007, 101, 10354210.1063/1.2735416. DOI

Zemek J.; Houdkova J.; Jiricek P.; Jelinek M. Amorphous carbon nanocomposite films doped by titanium: surface and sub-surface composition and bonding. Diam. Relat. Mater. 2018, 81, 61–69. 10.1016/j.diamond.2017.11.009. DOI

Ronning C.; Feldermann H.; Merk R.; Hofsass H.; Reinke P.; Thiele J.-U. Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B 1998, 58, 2207–2215. 10.1103/PhysRevB.58.2207. DOI

Hellgren N.; Haasch R. T.; Schmidt S.; Hultman L.; Petrov I. Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: New insights from in situ XPS. Carbon 2016, 108, 242–252. 10.1016/j.carbon.2016.07.017. DOI

Palacio C.; Gomez-Aleixandre C.; Diaz D.; Garcia M. M. Carbon nitride thin film formation by N2+ ion implantation. Vacuum 1997, 48, 709–713. 10.1016/S0042-207X(97)00036-5. DOI

Smith G. C.; Livesey A. K. Maximum entropy: A new approach to non-destructive deconvolution of depth profiles from angle dependent XPS. Surf. Interface Anal. 1992, 19, 175–180. 10.1002/sia.740190134. DOI

Livesey A. K.; Smith G. C. The determination of depth profiles from angle-dependent XPS using maximum entropy data analysis. J. Electron Spectrosc. Relat. Phenom. 1994, 67, 439–461. 10.1016/0368-2048(93)02035-K. DOI

MEMARXPS, ver. 3.0.5; Kratos Analytical Ltd.

Roberts A. J.; Macak K.; Takahashi K. Test of the consistency of angle resolved XPS data for depth profile reconstruction using Maximum Entropy Method. J. Surf. Anal. 2009, 15, 291–294. 10.1384/jsa.15.291. DOI

Macak K. Encoding of stoichiometric constraints in the composition depth profile reconstruction from angle resolved X-ray photoelectron spectroscopy data. Surf. Interface Anal. 2011, 43, 1581–1604. 10.1002/sia.3753. DOI

Szklarczyk M.; Macak K.; Roberts A. J.; Takahashi K.; Hutton S.; Glaszczka R.; Blomfield C. Sub-nanometer resolution XPS depth profiling: Sensing of atoms. Appl. Surf. Sci. 2017, 411, 386–393. 10.1016/j.apsusc.2017.02.222. DOI

Zemek J.; Houdkova J.; Jiricek P.; Jelinek M. Surface and in-depth distribution of sp2 and sp3 coordinated carbon atoms in diamond-like carbon films modified by argon ion bombardment during growth. Carbon 2018, 134, 71–79. 10.1016/j.carbon.2018.03.072. DOI

Zemek J.; Houdkova J.; Jiricek P.; Izak T.; Kalbac M. Non-destructive depth profile reconstruction of single-layer graphene using angle-resolved X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2019, 491, 16–23. 10.1016/j.apsusc.2019.06.083. DOI

Zemek J.; Houdkova J.; Jiricek P.; Jelinek M.; Jurek K.; Kocourek T.; Ledinsky M. In-depth distribution of elements and chemical bonds in the surface region of calcium- doped diamond-like carbon films. Appl. Surf. Sci. 2021, 539, 14825010.1016/j.apsusc.2020.148250. DOI

Cumpson P. J. Angle-resolved XPS and AES: Depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron Spectrosc. Relat. Phenom. 1995, 73, 25–52. 10.1016/0368-2048(94)02270-4. DOI

Lazar P.; Mach R.; Otyepka M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695–10702. 10.1021/acs.jpcc.9b02163. DOI

Figueras M.; Villar-Garcia I. J.; Vines F.; Sousa C.; de la Peña O’Shea V. A.; Illas F. Correcting flaws in the assignment of nitrogen chemical environments in N-doped graphene. J. Phys. Chem. C 2019, 123, 11319–11327. 10.1021/acs.jpcc.9b02554. DOI

Ayiania M.; Smith M.; Hensley A. J. R.; Scudiero L.; McEwen J.-S.; Garcia-Perez M. Deconvoluting the XPS spectra for nitrogen-doped chairs: An analysis from first principles. Carbon 2020, 162, 528–544. 10.1016/j.carbon.2020.02.065. DOI

Artyushkova K. Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. J. Vac. Sci. Technol., A 2020, 38, 03100210.1116/1.5135923. DOI

Kato T.; Yamada Y.; Nishikawa Y.; Otomo T.; Sato H.; Sato S. Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?. J. Mater. Sci. 2021, 56, 15798–15811. 10.1007/s10853-021-06283-5. DOI

Yamada Y.; Tanaka H.; Kubo S.; Sato S. Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy. Carbon 2021, 185, 342–367. 10.1016/j.carbon.2021.08.085. DOI

Kocourek T.; Jelínek M.; Pisarik P.; Remsa J.; Janovská M.; Landa M.; Zemek J.; Havránek V. Diamond-like Carbon layers modified by ion bombardment during growth and researched by Resonant Ultrasound Spectroscopy. Appl. Surf. Sci. 2017, 417, 213–217. 10.1016/j.apsusc.2017.03.274. DOI

Doniach S.; Sunjic M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C 1970, 3, 285–291. 10.1088/0022-3719/3/2/010. DOI

Beamson G.; Briggs D.. High Resolution XPS of Organic Polymers - The Scienta ESCA300 Database; Wiley: Chichester, U.K., 1992.

Gammon W.J.; Kraft O.; Reilly A.C.; Holloway B.C. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 2003, 41, 1917–1923. 10.1016/S0008-6223(03)00170-2. DOI

Etula J.; Wester N.; Liljestrom T.; Sainio S.; Palomaki T.; Arstila K.; Sajavaara J.; Koskinen J.; Caro M. A.; Laurila T. What determines the electrochemical properties of nitrogenated amorphous carbon films?. Chem. Mater. 2021, 33, 6813–6824. 10.1021/acs.chemmater.1c01519. DOI

Ripalda J. M.; Díaz N.; Román E.; Galán L.; Montero I.; Goldoni A.; Baraldi A.; Lizzit S.; Comelli G.; Paolucci G. Chemical shift resolved photoionization cross sections of amorphous carbon nitride. Phys. Rev. Lett. 2000, 85, 2132–2135. 10.1103/PhysRevLett.85.2132. PubMed DOI

Kuntumalla M. K.; Attrash M.; Akhvlediani R.; Michaelson S.; Hoffman A. Nitrogen bonding, work function and thermal stability of nitrided graphite surface: An in-situ XPS, UPS and HREELS study. Appl. Surf. Sci. 2020, 525, 14656210.1016/j.apsusc.2020.146562. DOI

Kulisch W.; Delplancke-Ogletree M. P.; Bulir J.; Jelınek M.; Jurek K.; Zemek J.; Klimovic J. Characterization of magnetron sputtered carbon nitride films. Diam. Relat. Mater. 1999, 8, 1039–1045. 10.1016/S0925-9635(98)00452-X. DOI

Kakiuchi H.; Terai T. Preferential sputtering from the surface of amorphous carbon nitride (a-C:N) thin films upon ion implantation. Nucl. Instr. Meth. Phys. Res. B 2003, 206, 27–30. 10.1016/S0168-583X(03)00707-9. DOI

Escobar-Alarcon L.; Arrieta A.; Camps E.; Romero S.; Muhl S.; Camacho-Lopez M. A. Effect of deposition parameters on the properties of amorphous carbon nitride films prepared by laser ablation. J. Phys.: Conf. Ser. 2007, 59, 492–496. 10.1088/1742-6596/59/1/106. DOI

Iijima Y.; Harigai T.; Isono R.; Imai T.; Suda Y.; Takikawa H.; Kamiya M.; Taki M.; Hasegawa Y.; Tsuji N.; Kaneko S.; Kunitsugu S.; Habuchi H.; Kiyohara S.; Ito M.; Yick S.; Bendavid A.; Martin P. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating films. Jpn. J. Appl. Phys. 2018, 57, 01AE0710.7567/JJAP.57.01AE07. DOI

Polo M. C.; Andujar J. L.; Hart A.; Robertson J.; Milne W. I. Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition. Diam. Relat. Mater. 2000, 9, 663–667. 10.1016/S0925-9635(99)00339-8. DOI

Kim S.; Jeong M-W.; Kim K.; Kim U-g.; Kim M.; Lee S-Y.; Joo Y-C. Effect of N doping on the microstructure and dry etch properties of amorphous carbon deposited with a DC sputtering system. RSC Adv. 2023, 13, 2131–2139. 10.1039/D2RA06808G. PubMed DOI PMC

Hu J.; Yang P.; Lieber C. M. Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials. Phys. Rev. B 1998, 57, R3185–R3188. 10.1103/PhysRevB.57.R3185. DOI

Rossi F.; Andre B.; van Veen A.; Mijnarends P. E.; Schut H.; Labohm F.; Delplancke M. P.; Dunlop H.; Anger E. Physical properties of nitrogenated amorphous carbon films produced by ion beam assisted deposition. Thin Solid Films 1994, 253, 85–89. 10.1016/0040-6090(94)90299-2. DOI

Vasilets V. N.; Hirose A.; Yang Q.; Singh A.; Sammynaiken R.; Foursa M.; Shulga Y. M. Characterization of doped diamond-like carbon films deposited by hot wire plasma sputtering of graphite. Appl. Phys. A: Mater. Sci. Process. 2004, 79, 2079–2084. 10.1007/s00339-004-2873-x. DOI

Lopez S.; Dunlop H. M.; Benmalek M.; Tourillon G.; Wong M.-S.; Sproul W. D. XPS, XANES and ToF-SIMS characterization of reactively magnetron-sputtered carbon nitride films. Surf. Interface Anal. 1997, 25, 315–323. 10.1002/(SICI)1096-9918(199705)25:5<315::AID-SIA238>3.0.CO;2-S. DOI

Kovach G.; Karacs A.; Radnoczi G.; Csorbai H.; Guczi L.; Veres M.; Koos M.; Papadimitriou L.; Solyom A.; Peto G. Modified π-states in ion-irradiated carbon. Appl. Surf. Sci. 2008, 254, 2790–2796. 10.1016/j.apsusc.2007.10.051. DOI

Lesiak B.; Zemek J.; Houdkova J. Hydrogen detection and quantification at polymer surfaces investigated by elastic peak electron spectroscopy (EPES). Polymer 2008, 49, 4127–4132. 10.1016/j.polymer.2008.07.029. DOI

Bosman M.; Keast V. J.; Watanabe M.; McCulloch D. G.; Shakerzadeh M.; Teo E. H. T.; Tay B. K. Quantitative, nanoscale mapping of sp2 percentage and crystal orientation in carbon multilayers. Carbon 2009, 47, 94–101. 10.1016/j.carbon.2008.09.033. DOI

Jablonski A.; Powell C. J. Information depth for elastic-peak electron spectroscopy. Surf. Sci. 2004, 551, 106–124. 10.1016/j.susc.2003.12.036. DOI

Shinotsuka H.; Tanuma S.; Powell C. J.; Penn D. R. Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Pen algorithm. Surf. Interface Anal. 2015, 47, 871–888. 10.1002/sia.5789. DOI

Poplavsky A. I.; Kolpakov A.Ya.; Kudriavtsev Yu.; Asomoza R.; Goncharov I.Yu.; Galkina M. E.; Manokhin S. S.; Kharchenko V. A. Effect of nitrogen ion irradiation parameters on properties of nitrogen-containing carbon coatings prepared by pulsed vacuum arc deposition method. Vacuum 2018, 152, 193–199. 10.1016/j.vacuum.2018.03.028. DOI

Davis C. A.; Knowles K. M.; Amaratunga G. A. J. Cross-sectional structure of tetrahedral amorphous carbon thin films. Surf. Coat. Technol. 1995, 76–77, 316–321. 10.1016/0257-8972(95)02553-7. DOI

Merel P.; Tabbal M.; Chaker M.; Moisa S.; Margot J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110. 10.1016/S0169-4332(98)00319-5. DOI

Kohler Th.; Jungnickel G.; Frauenheim Th. Molecular-dynamics study of nitrogen impurities in tetrahedral amorphous carbon. Phys. Rev. B 1999, 60, 10864–10871. 10.1103/PhysRevB.60.10864. DOI

Le Normand F.; Hommet J.; Szorenyi T.; Fuchs C.; Fogarassy E. XPS study of pulsed laser deposited CNx films. Phys. Rev. B 2001, 64, 23541610.1103/PhysRevB.64.235416. DOI

Zemek J.; Jiricek P.; Houdkova J; Ledinsky M.; Jelinek M; Kocourek T. On the origin of reduced cytotoxicity of germanium-doped diamond-like carbon: Role of top surface composition and bonding. Nanomaterials 2021, 11, 567.10.3390/nano11030567. PubMed DOI PMC

Zemek J.; Olejnik K.; Klapetek P. Photoelectron spectroscopy from randomly corrugated surfaces. Surf. Sci. 2008, 602, 1440–1446. 10.1016/j.susc.2008.02.006. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...