Amorphous Carbon Nitride Films: Surface and Subsurface Composition and Bonding
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39213589
PubMed Central
PMC11411727
DOI
10.1021/acs.langmuir.4c02007
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
To obtain quantitative information about the composition and bonding of atoms located at and beyond the analyzed solid surface nondestructively, we applied angle-resolved X-ray photoelectron spectroscopy aided by the maximum entropy method to air-exposed amorphous carbon nitride films deposited by pulsed laser deposition of diamond-like carbon modified by low-energy nitrogen ion bombardment during film growth. We demonstrate that the composition, chemical bonding, and mass density vary significantly from the top surface to a shallow subsurface region. The analyzed samples, in a shallow surface region of ∼1 nm, are composed of oxygen, nitrogen, hydrogen, and mostly carbon in sp2 hybridization. In a deeper region, the C sp3 content increases substantially going to a maximum, whereas the nitrogen percentage decreases to a minimum, then increases, and tends to saturate. Special attention has been paid to in-depth distributions of carbon atoms in trigonal and tetragonal arrangements because they specify numerous physical and chemical properties of carbon-based materials. These results indicate that the interaction of DLC:N surfaces with surroundings can be influenced, barring oxygen and nitrogen, by sp2-bonded carbon atoms located near the surface of the samples. The obtained results can be useful for developing a deeper understanding of the interaction between DLC:N layer surfaces and their surroundings and particularly with living tissue.
See more in PubMed
Jablonski A. Analytical formalism for calculations of parameters needed for quantitative analysis by X-ray photoelectron spectroscopy. Comput. Phys. Commun. 2022, 272, 10823310.1016/j.cpc.2021.108233. DOI
Romanyuk O.; Zemek J.; Houdkova J.; Babcenko O.; Shagieva E.; Beranova K.; Kromka A.; Jiricek P. Effects of monoatomic and cluster bombardment with Ar ion beam on the surface of hydrogenated nanocrystalline diamond. Diam. Relat. Mater. 2023, 133, 10974810.1016/j.diamond.2023.109748. DOI
Takabayashi S.; Motomitsu K.; Takahagi T.; Terayama A.; Okamoto K.; Nakatani T. Qualitative analysis of a diamondlike carbon film by angle-resolved x-ray photoelectron spectroscopy. J. Appl. Phys. 2007, 101, 10354210.1063/1.2735416. DOI
Zemek J.; Houdkova J.; Jiricek P.; Jelinek M. Amorphous carbon nanocomposite films doped by titanium: surface and sub-surface composition and bonding. Diam. Relat. Mater. 2018, 81, 61–69. 10.1016/j.diamond.2017.11.009. DOI
Ronning C.; Feldermann H.; Merk R.; Hofsass H.; Reinke P.; Thiele J.-U. Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B 1998, 58, 2207–2215. 10.1103/PhysRevB.58.2207. DOI
Hellgren N.; Haasch R. T.; Schmidt S.; Hultman L.; Petrov I. Interpretation of X-ray photoelectron spectra of carbon-nitride thin films: New insights from in situ XPS. Carbon 2016, 108, 242–252. 10.1016/j.carbon.2016.07.017. DOI
Palacio C.; Gomez-Aleixandre C.; Diaz D.; Garcia M. M. Carbon nitride thin film formation by N2+ ion implantation. Vacuum 1997, 48, 709–713. 10.1016/S0042-207X(97)00036-5. DOI
Smith G. C.; Livesey A. K. Maximum entropy: A new approach to non-destructive deconvolution of depth profiles from angle dependent XPS. Surf. Interface Anal. 1992, 19, 175–180. 10.1002/sia.740190134. DOI
Livesey A. K.; Smith G. C. The determination of depth profiles from angle-dependent XPS using maximum entropy data analysis. J. Electron Spectrosc. Relat. Phenom. 1994, 67, 439–461. 10.1016/0368-2048(93)02035-K. DOI
MEMARXPS, ver. 3.0.5; Kratos Analytical Ltd.
Roberts A. J.; Macak K.; Takahashi K. Test of the consistency of angle resolved XPS data for depth profile reconstruction using Maximum Entropy Method. J. Surf. Anal. 2009, 15, 291–294. 10.1384/jsa.15.291. DOI
Macak K. Encoding of stoichiometric constraints in the composition depth profile reconstruction from angle resolved X-ray photoelectron spectroscopy data. Surf. Interface Anal. 2011, 43, 1581–1604. 10.1002/sia.3753. DOI
Szklarczyk M.; Macak K.; Roberts A. J.; Takahashi K.; Hutton S.; Glaszczka R.; Blomfield C. Sub-nanometer resolution XPS depth profiling: Sensing of atoms. Appl. Surf. Sci. 2017, 411, 386–393. 10.1016/j.apsusc.2017.02.222. DOI
Zemek J.; Houdkova J.; Jiricek P.; Jelinek M. Surface and in-depth distribution of sp2 and sp3 coordinated carbon atoms in diamond-like carbon films modified by argon ion bombardment during growth. Carbon 2018, 134, 71–79. 10.1016/j.carbon.2018.03.072. DOI
Zemek J.; Houdkova J.; Jiricek P.; Izak T.; Kalbac M. Non-destructive depth profile reconstruction of single-layer graphene using angle-resolved X-ray photoelectron spectroscopy. Appl. Surf. Sci. 2019, 491, 16–23. 10.1016/j.apsusc.2019.06.083. DOI
Zemek J.; Houdkova J.; Jiricek P.; Jelinek M.; Jurek K.; Kocourek T.; Ledinsky M. In-depth distribution of elements and chemical bonds in the surface region of calcium- doped diamond-like carbon films. Appl. Surf. Sci. 2021, 539, 14825010.1016/j.apsusc.2020.148250. DOI
Cumpson P. J. Angle-resolved XPS and AES: Depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron Spectrosc. Relat. Phenom. 1995, 73, 25–52. 10.1016/0368-2048(94)02270-4. DOI
Lazar P.; Mach R.; Otyepka M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695–10702. 10.1021/acs.jpcc.9b02163. DOI
Figueras M.; Villar-Garcia I. J.; Vines F.; Sousa C.; de la Peña O’Shea V. A.; Illas F. Correcting flaws in the assignment of nitrogen chemical environments in N-doped graphene. J. Phys. Chem. C 2019, 123, 11319–11327. 10.1021/acs.jpcc.9b02554. DOI
Ayiania M.; Smith M.; Hensley A. J. R.; Scudiero L.; McEwen J.-S.; Garcia-Perez M. Deconvoluting the XPS spectra for nitrogen-doped chairs: An analysis from first principles. Carbon 2020, 162, 528–544. 10.1016/j.carbon.2020.02.065. DOI
Artyushkova K. Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. J. Vac. Sci. Technol., A 2020, 38, 03100210.1116/1.5135923. DOI
Kato T.; Yamada Y.; Nishikawa Y.; Otomo T.; Sato H.; Sato S. Origins of peaks of graphitic and pyrrolic nitrogen in N1s X-ray photoelectron spectra of carbon materials: quaternary nitrogen, tertiary amine, or secondary amine?. J. Mater. Sci. 2021, 56, 15798–15811. 10.1007/s10853-021-06283-5. DOI
Yamada Y.; Tanaka H.; Kubo S.; Sato S. Unveiling bonding states and roles of edges in nitrogen-doped graphene nanoribbon by X-ray photoelectron spectroscopy. Carbon 2021, 185, 342–367. 10.1016/j.carbon.2021.08.085. DOI
Kocourek T.; Jelínek M.; Pisarik P.; Remsa J.; Janovská M.; Landa M.; Zemek J.; Havránek V. Diamond-like Carbon layers modified by ion bombardment during growth and researched by Resonant Ultrasound Spectroscopy. Appl. Surf. Sci. 2017, 417, 213–217. 10.1016/j.apsusc.2017.03.274. DOI
Doniach S.; Sunjic M. Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C 1970, 3, 285–291. 10.1088/0022-3719/3/2/010. DOI
Beamson G.; Briggs D.. High Resolution XPS of Organic Polymers - The Scienta ESCA300 Database; Wiley: Chichester, U.K., 1992.
Gammon W.J.; Kraft O.; Reilly A.C.; Holloway B.C. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 2003, 41, 1917–1923. 10.1016/S0008-6223(03)00170-2. DOI
Etula J.; Wester N.; Liljestrom T.; Sainio S.; Palomaki T.; Arstila K.; Sajavaara J.; Koskinen J.; Caro M. A.; Laurila T. What determines the electrochemical properties of nitrogenated amorphous carbon films?. Chem. Mater. 2021, 33, 6813–6824. 10.1021/acs.chemmater.1c01519. DOI
Ripalda J. M.; Díaz N.; Román E.; Galán L.; Montero I.; Goldoni A.; Baraldi A.; Lizzit S.; Comelli G.; Paolucci G. Chemical shift resolved photoionization cross sections of amorphous carbon nitride. Phys. Rev. Lett. 2000, 85, 2132–2135. 10.1103/PhysRevLett.85.2132. PubMed DOI
Kuntumalla M. K.; Attrash M.; Akhvlediani R.; Michaelson S.; Hoffman A. Nitrogen bonding, work function and thermal stability of nitrided graphite surface: An in-situ XPS, UPS and HREELS study. Appl. Surf. Sci. 2020, 525, 14656210.1016/j.apsusc.2020.146562. DOI
Kulisch W.; Delplancke-Ogletree M. P.; Bulir J.; Jelınek M.; Jurek K.; Zemek J.; Klimovic J. Characterization of magnetron sputtered carbon nitride films. Diam. Relat. Mater. 1999, 8, 1039–1045. 10.1016/S0925-9635(98)00452-X. DOI
Kakiuchi H.; Terai T. Preferential sputtering from the surface of amorphous carbon nitride (a-C:N) thin films upon ion implantation. Nucl. Instr. Meth. Phys. Res. B 2003, 206, 27–30. 10.1016/S0168-583X(03)00707-9. DOI
Escobar-Alarcon L.; Arrieta A.; Camps E.; Romero S.; Muhl S.; Camacho-Lopez M. A. Effect of deposition parameters on the properties of amorphous carbon nitride films prepared by laser ablation. J. Phys.: Conf. Ser. 2007, 59, 492–496. 10.1088/1742-6596/59/1/106. DOI
Iijima Y.; Harigai T.; Isono R.; Imai T.; Suda Y.; Takikawa H.; Kamiya M.; Taki M.; Hasegawa Y.; Tsuji N.; Kaneko S.; Kunitsugu S.; Habuchi H.; Kiyohara S.; Ito M.; Yick S.; Bendavid A.; Martin P. Fabrication of nitrogen-containing diamond-like carbon film by filtered arc deposition as conductive hard-coating films. Jpn. J. Appl. Phys. 2018, 57, 01AE0710.7567/JJAP.57.01AE07. DOI
Polo M. C.; Andujar J. L.; Hart A.; Robertson J.; Milne W. I. Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition. Diam. Relat. Mater. 2000, 9, 663–667. 10.1016/S0925-9635(99)00339-8. DOI
Kim S.; Jeong M-W.; Kim K.; Kim U-g.; Kim M.; Lee S-Y.; Joo Y-C. Effect of N doping on the microstructure and dry etch properties of amorphous carbon deposited with a DC sputtering system. RSC Adv. 2023, 13, 2131–2139. 10.1039/D2RA06808G. PubMed DOI PMC
Hu J.; Yang P.; Lieber C. M. Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials. Phys. Rev. B 1998, 57, R3185–R3188. 10.1103/PhysRevB.57.R3185. DOI
Rossi F.; Andre B.; van Veen A.; Mijnarends P. E.; Schut H.; Labohm F.; Delplancke M. P.; Dunlop H.; Anger E. Physical properties of nitrogenated amorphous carbon films produced by ion beam assisted deposition. Thin Solid Films 1994, 253, 85–89. 10.1016/0040-6090(94)90299-2. DOI
Vasilets V. N.; Hirose A.; Yang Q.; Singh A.; Sammynaiken R.; Foursa M.; Shulga Y. M. Characterization of doped diamond-like carbon films deposited by hot wire plasma sputtering of graphite. Appl. Phys. A: Mater. Sci. Process. 2004, 79, 2079–2084. 10.1007/s00339-004-2873-x. DOI
Lopez S.; Dunlop H. M.; Benmalek M.; Tourillon G.; Wong M.-S.; Sproul W. D. XPS, XANES and ToF-SIMS characterization of reactively magnetron-sputtered carbon nitride films. Surf. Interface Anal. 1997, 25, 315–323. 10.1002/(SICI)1096-9918(199705)25:5<315::AID-SIA238>3.0.CO;2-S. DOI
Kovach G.; Karacs A.; Radnoczi G.; Csorbai H.; Guczi L.; Veres M.; Koos M.; Papadimitriou L.; Solyom A.; Peto G. Modified π-states in ion-irradiated carbon. Appl. Surf. Sci. 2008, 254, 2790–2796. 10.1016/j.apsusc.2007.10.051. DOI
Lesiak B.; Zemek J.; Houdkova J. Hydrogen detection and quantification at polymer surfaces investigated by elastic peak electron spectroscopy (EPES). Polymer 2008, 49, 4127–4132. 10.1016/j.polymer.2008.07.029. DOI
Bosman M.; Keast V. J.; Watanabe M.; McCulloch D. G.; Shakerzadeh M.; Teo E. H. T.; Tay B. K. Quantitative, nanoscale mapping of sp2 percentage and crystal orientation in carbon multilayers. Carbon 2009, 47, 94–101. 10.1016/j.carbon.2008.09.033. DOI
Jablonski A.; Powell C. J. Information depth for elastic-peak electron spectroscopy. Surf. Sci. 2004, 551, 106–124. 10.1016/j.susc.2003.12.036. DOI
Shinotsuka H.; Tanuma S.; Powell C. J.; Penn D. R. Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Pen algorithm. Surf. Interface Anal. 2015, 47, 871–888. 10.1002/sia.5789. DOI
Poplavsky A. I.; Kolpakov A.Ya.; Kudriavtsev Yu.; Asomoza R.; Goncharov I.Yu.; Galkina M. E.; Manokhin S. S.; Kharchenko V. A. Effect of nitrogen ion irradiation parameters on properties of nitrogen-containing carbon coatings prepared by pulsed vacuum arc deposition method. Vacuum 2018, 152, 193–199. 10.1016/j.vacuum.2018.03.028. DOI
Davis C. A.; Knowles K. M.; Amaratunga G. A. J. Cross-sectional structure of tetrahedral amorphous carbon thin films. Surf. Coat. Technol. 1995, 76–77, 316–321. 10.1016/0257-8972(95)02553-7. DOI
Merel P.; Tabbal M.; Chaker M.; Moisa S.; Margot J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110. 10.1016/S0169-4332(98)00319-5. DOI
Kohler Th.; Jungnickel G.; Frauenheim Th. Molecular-dynamics study of nitrogen impurities in tetrahedral amorphous carbon. Phys. Rev. B 1999, 60, 10864–10871. 10.1103/PhysRevB.60.10864. DOI
Le Normand F.; Hommet J.; Szorenyi T.; Fuchs C.; Fogarassy E. XPS study of pulsed laser deposited CNx films. Phys. Rev. B 2001, 64, 23541610.1103/PhysRevB.64.235416. DOI
Zemek J.; Jiricek P.; Houdkova J; Ledinsky M.; Jelinek M; Kocourek T. On the origin of reduced cytotoxicity of germanium-doped diamond-like carbon: Role of top surface composition and bonding. Nanomaterials 2021, 11, 567.10.3390/nano11030567. PubMed DOI PMC
Zemek J.; Olejnik K.; Klapetek P. Photoelectron spectroscopy from randomly corrugated surfaces. Surf. Sci. 2008, 602, 1440–1446. 10.1016/j.susc.2008.02.006. DOI