Poly(ε-Caprolactone)-Based Composites Modified With Polymer-Grafted Magnetic Nanoparticles and L-Ascorbic Acid for Bone Tissue Engineering

. 2024 Sep ; 112 (9) : e35480.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39223717

Grantová podpora
European Union
2022 Akademie Věd České Republiky
Grantová Agentura České Republiky
20-07015S Czech Science Foundation
LX22NPO5102 National Institute for Cancer Research

The aim of this study was to develop multifunctional magnetic poly(ε-caprolactone) (PCL) mats with antibacterial properties for bone tissue engineering and osteosarcoma prevention. To provide good dispersion of magnetic iron oxide nanoparticles (IONs), they were first grafted with PCL using a novel three-step approach. Then, a series of PCL-based mats containing a fixed amount of ION@PCL particles and an increasing content of ascorbic acid (AA) was prepared by electrospinning. AA is known for increasing osteoblast activity and suppressing osteosarcoma cells. Composites were characterized in terms of morphology, mechanical properties, hydrolytic stability, antibacterial performance, and biocompatibility. AA affected both the fiber diameter and the mechanical properties of the nanocomposites. All produced mats were nontoxic to rat bone marrow-derived mesenchymal cells; however, a composite with 5 wt.% of AA suppressed the initial proliferation of SAOS-2 osteoblast-like cells. Moreover, AA improved antibacterial properties against Staphylococcus aureus and Escherichia coli compared to PCL. Overall, these magnetic composites, reported for the very first time, can be used as scaffolds for both tissue regeneration and osteosarcoma prevention.

Zobrazit více v PubMed

A. Farzin, M. Fathi, and R. Emadi, “Multifunctional Magnetic Nanostructured Hardystonite Scaffold for Hyperthermia, Drug Delivery and Tissue Engineering Applications,” Materials Science and Engineering: C 70 (2017): 21–31, https://doi.org/10.1016/j.msec.2016.08.060.

J. Zhang, S. Zhao, M. Zhu, et al., “3D‐Printed Magnetic Fe3O4/MBG/PCL Composite Scaffolds With Multifunctionality of Bone Regeneration, Local Anticancer Drug Delivery and Hyperthermia,” Journal of Materials Chemistry B 2 (2014): 7583–7595, https://doi.org/10.1039/C4TB01063A.

Z. Kang, X. Zhang, Y. Chen, M. Y. Ahram, J. Nie, and X. Zhu, “Preparation of Polymer/Calcium Phosphate Porous Composite as Bone Tissue Scaffolds,” Materials Science and Engineering C 70 (2017): 1125–1131, https://doi.org/10.1016/j.msec.2016.04.008.

N. Amiryaghoubi, M. Fathi, A. Barzegari, J. Barar, H. Omidian, and Y. Omidi, “Recent Advances in Polymeric Scaffolds Containing Carbon Nanotube and Graphene Oxide for Cartilage and Bone Regeneration,” Materials Today Communications 26 (2021): 102097, https://doi.org/10.1016/j.mtcomm.2021.102097.

J. Sonatkar and B. Kandasubramanian, “Bioactive Glass With Biocompatible Polymers for Bone Applications,” European Polymer Journal 160 (2021): 110801, https://doi.org/10.1016/j.eurpolymj.2021.110801.

R. Eivazzadeh‐Keihan, E. B. Noruzi, K. K. Chenab, et al., “Metal‐Based Nanoparticles for Bone Tissue Engineering,” Journal of Tissue Engineering and Regenerative Medicine 14 (2020): 1687–1714, https://doi.org/10.1002/term.3131.

M. G. M. Schneider, M. J. Martín, J. Otarola, et al., “Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives,” Pharmaceutics 14 (2022): 204, https://doi.org/10.3390/pharmaceutics14010204.

R. Sun, H. Chen, J. Zheng, et al., “Composite Scaffolds of Gelatin and Fe3O4 Nanoparticles for Magnetic Hyperthermia‐Based Breast Cancer Treatment and Adipose Tissue Regeneration,” Advanced Healthcare Materials 12 (2023): 2202604, https://doi.org/10.1002/adhm.202202604.

Y. Xia, J. Sun, L. Zhao, et al., “Magnetic Field and Nano‐Scaffolds With Stem Cells to Enhance Bone Regeneration,” Biomaterials 183 (2018): 151–170, https://doi.org/10.1016/j.biomaterials.2018.08.040.

H.‐M. Yun, S.‐J. Ahn, K.‐R. Park, et al., “Magnetic Nanocomposite Scaffolds Combined With Static Magnetic Field in the Stimulation of Osteoblastic Differentiation and Bone Formation,” Biomaterials 85 (2016): 88–98, https://doi.org/10.1016/j.biomaterials.2016.01.035.

D. Mertz, O. Sandre, and S. Bégin‐Colin, “Drug Releasing Nanoplatforms Activated by Alternating Magnetic Fields,” Biochimica et Biophysica Acta (BBA)‐General Subjects 1861 (2017): 1617–1641, https://doi.org/10.1016/j.bbagen.2017.02.025.

M. Maglio, M. Sartori, A. Gambardella, et al., “Bone Regeneration Guided by a Magnetized Scaffold in an Ovine Defect Model,” International Journal of Molecular Sciences 24 (2023): 747, https://doi.org/10.3390/ijms24010747.

S. Panseri, A. Russo, M. Sartori, et al., “Modifying Bone Scaffold Architecture in Vivo With Permanent Magnets to Facilitate Fixation of Magnetic Scaffolds,” Bone 56 (2013): 432–439, https://doi.org/10.1016/j.bone.2013.07.015.

L. Hao, J. Li, P. Wang, et al., “Spatiotemporal Magnetocaloric Microenvironment for Guiding the Fate of Biodegradable Polymer Implants,” Advanced Functional Materials 31 (2021): 200966, https://doi.org/10.1002/adfm.202009661.

Q. Liu, L. Feng, Z. Chen, et al., “Ultrasmall Superparamagnetic Iron Oxide Labeled Silk Fibroin/Hydroxyapatite Multifunctional Scaffold Loaded With Bone Marrow‐Derived Mesenchymal Stem Cells for Bone Regeneration,” Frontiers in Bioengineering and Biotechnology 8 (2020): 697, https://doi.org/10.3389/fbioe.2020.00697.

Y. Ding, W. Li, A. Correia, et al., “Electrospun Polyhydroxybutyrate/Poly(ε‐Caprolactone)/Sol‐Gel‐Derived Silica Hybrid Scaffolds With Drug Releasing Function for Bone Tissue Engineering Applications,” ACS Applied Materials & Interfaces 10 (2018): 14540–14548, https://doi.org/10.1021/acsami.8b02656.

P. Pankongadisak, N. Jaikaew, K. Kiti, B. Chuenjitkuntaworn, P. Supaphol, and O. Suwantong, “The Potential Use of Gentamicin Sulfate‐Loaded Poly(L‐Lactic Acid)‐Sericin Hybrid Scaffolds for Bone Tissue Engineering,” Polymer Bulletin 76 (2019): 2867–2885, https://doi.org/10.1007/s00289‐018‐2520‐x.

Z. Qiao, W. Zhang, H. Jiang, X. Li, W. An, and H. Yang, “3D‐Printed Composite Scaffold With Anti‐Infection and Osteogenesis Potential Against Infected Bone Defects,” RSC Advances 12 (2022): 11008–11020, https://doi.org/10.1039/D2RA00214K.

J. Fernández, M. Ruiz‐Ruiz, and J.‐R. Sarasua, “Electrospun Fibers of Polyester, With Both Nano‐ and Micron Diameters, Loaded With Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds,” ACS Applied Polymer Materials 1 (2019): 1096–1106, https://doi.org/10.1021/acsapm.9b00108.

B. Kaczmarek, O. Mazur, M. Miłek, M. Michalska‐Sionkowska, A. M. Osyczka, and K. Kleszczyński, “Development of Tannic Acid‐Enriched Materials Modified by Poly(Ethylene Glycol) for Potential Applications as Wound Dressing,” Progress in Biomaterials 9 (2020): 115–123, https://doi.org/10.1007/s40204‐020‐00136‐1.

L. Goimil, M. E. M. Braga, A. M. A. Dias, et al., “Supercritical Processing of Starch Aerogels and Aerogel‐Loaded Poly(ε‐Caprolactone) Scaffolds for Sustained Release of Ketoprofen for Bone Regeneration,” Journal of CO2 Utilization 18 (2017): 237–249, https://doi.org/10.1016/j.jcou.2017.01.028.

S. M. Kamrul Hasan, R. Li, Y. Wang, et al., “Sustained Local Delivery of Diclofenac From Three‐Dimensional Ultrafine Fibrous Protein Scaffolds With Ultrahigh Drug Loading Capacity,” Nanomaterials 9 (2019): 918, https://doi.org/10.3390/nano9070918.

H. P. Dang, A. Shafiee, C. A. Lahr, T. R. Dargaville, and P. A. Tran, “Local Doxorubicin Delivery via 3D‐Printed Porous Scaffolds Reduces Systemic Cytotoxicity and Breast Cancer Recurrence in Mice,” Advanced Therapeutics 3 (2020): 2000056, https://doi.org/10.1002/adtp.202000056.

P. Sengupta, V. Agrawal, and B. L. V. Prasad, “Development of a Smart Scaffold for Sequential Cancer Chemotherapy and Tissue Engineering,” ACS Omega 5 (2020): 20724–20733, https://doi.org/10.1021/acsomega.9b03694.

P. Aghajanian, S. Hall, M. D. Wongworawat, and S. Mohan, “The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments,” Journal of Bone and Mineral Research 30 (2015): 1945–1955, https://doi.org/10.1002/jbmr.2709.

G. Fernandes, A. W. Barone, and R. Dziak, “The Effect of Ascorbic Acid on Bone Cancer Cells in Vitro,” Cogent Biology 3 (2017): 1288335, https://doi.org/10.1080/23312025.2017.1288335.

R. Thaler, F. Khani, I. Sturmlechner, et al., “Vitamin C Epigenetically Controls Osteogenesis and Bone Mineralization,” Nature Communications 13 (2022): 5883, https://doi.org/10.1038/s41467‐022‐32915‐8.

J. Zhang, B. A. Doll, E. J. Beckman, and J. O. Hollinger, “A Biodegradable Polyurethane‐Ascorbic Acid Scaffold for Bone Tissue Engineering,” Journal of Biomedical Materials Research Part A 67 (2003): 389–400, https://doi.org/10.1002/jbm.a.10015.

A. Barlian, H. Judawisastra, A. Ridwan, A. R. Wahyuni, and M. E. Lingga, “Chondrogenic Differentiation of Wharton's Jelly Mesenchymal Stem Cells on Silk Spidroin‐Fibroin Mix Scaffold Supplemented With L‐Ascorbic Acid and Platelet Rich Plasma,” Scientific Reports 10 (2020): 19449, https://doi.org/10.1038/s41598‐020‐76466‐8.

M. Janmohammadi, M. S. Nourbakhsh, and S. Bonakdar, “Electrospun Skin Tissue Engineering Scaffolds Based on Polycaprolactone/Hyaluronic Acid/L‐Ascorbic Acid,” Fibers and Polymers 22 (2021): 19–29, https://doi.org/10.1007/s12221‐021‐0036‐8.

N. Mangır, A. J. Bullock, S. Roman, N. Osman, C. Chapple, and S. MacNeil, “Production of Ascorbic Acid Releasing Biomaterials for Pelvic Floor Repair,” Acta Biomaterialia 29 (2016): 188–197, https://doi.org/10.1016/j.actbio.2015.10.019.

C. Wang, X. Cao, and Y. Zhang, “A Novel Bioactive Osteogenesis Scaffold Delivers Ascorbic Acid, β‐Glycerophosphate, and Dexamethasone in Vivo to Promote Bone Regeneration,” Oncotarget 8 (2017): 31612–31625, https://doi.org/10.18632/oncotarget.15779.

S. Bose, N. Sarkar, and S. Vahabzadeh, “Sustained Release of Vitamin C From PCL Coated TCP Induces Proliferation and Differentiation of Osteoblast Cells and Suppresses Osteosarcoma Cell Growth,” Materials Science and Engineering: C 105 (2019): 110096, https://doi.org/10.1016/j.msec.2019.110096.

E. Malikmammadov, T. E. Tanir, A. Kiziltay, V. Hasirci, and N. Hasirci, “PCL and PCL‐Based Materials in Biomedical Applications,” Journal of Biomaterials Science, Polymer Edition 29 (2018): 863–893, https://doi.org/10.1080/09205063.2017.1394711.

B. A. Zasońska, A. Líšková, M. Kuricová, et al., “Functionalized Porous Silica and Maghemite Core‐Shell Nanoparticles for Applications in Medicine: Design, Synthesis, and Immunotoxicity,” Croatian Medical Journal 57 (2016): 165–179, https://doi.org/10.3325/cmj.2016.57.165.

P. Ryšánek, M. Malý, P. Čapková, et al., “Antibacterial Modification of Nylon‐6 Nanofibers: Structure, Properties and Antibacterial Activity,” Journal of Polymer Research 24 (2017): 208, https://doi.org/10.1007/s10965‐017‐1365‐6.

M. Stoia, R. Istratie, and C. Păcurariu, “Investigation of Magnetite Nanoparticles Stability in Air by Thermal Analysis and FTIR Spectroscopy,” Journal of Thermal Analysis and Calorimetry 125 (2016): 1185–1198, https://doi.org/10.1007/s10973‐016‐5393‐y.

A. A. Tabatabaiee Bafrooee, E. Moniri, H. Ahmad Panahi, M. Miralinaghi, and A. H. Hasani, “Ethylenediamine Functionalized Magnetic Graphene Oxide (Fe3O4@GO‐EDA) as an Efficient Adsorbent in Arsenic(III) Decontamination From Aqueous Solution,” Research on Chemical Intermediates 47 (2021): 1397–1428, https://doi.org/10.1007/s11164‐020‐04368‐5.

J. S. Lyu, J.‐S. Lee, and J. Han, “Development of a Biodegradable Polycaprolactone Film Incorporated With an Antimicrobial Agent via an Extrusion Process,” Scientific Reports 9 (2019): 20236, https://doi.org/10.1038/s41598‐019‐56757‐5.

I. Jun, H. S. Han, J. R. Edwards, and H. Joen, “Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication,” International Journal of Molecular Sciences 19 (2018): 745, https://doi.org/10.3390/ijms19030745.

G. J. Kontoghiorghes, A. Kolnagou, C. N. Kontoghiorghe, L. Mourouzidis, V. A. Timoshnikov, and N. E. Polyakov, “Trying to Solve the Puzzle of the Interaction of Ascorbic Acid and Iron: Redox, Chelation and Therapeutic Implications,” Medicine 7 (2020): 45, https://doi.org/10.3390/medicines7080045.

P. Su, Y. Tian, C. Yang, et al., “Mesenchymal Stem Cell Migration During Bone Formation and Bone Diseases Therapy,” International Journal of Molecular Sciences 19 (2018): 2343, https://doi.org/10.3390/ijms19082343.

Q. Li, C. W. Kartikowati, S. Horie, T. Ogi, T. Iwaki, and K. Okuyama, “Correlation Between Particle Size/Domain Structure and Magnetic Properties of Highly Crystalline Fe3O4 Nanoparticles,” Scientific Reports 7 (2017): 9894, https://doi.org/10.1038/s41598‐017‐09897‐5.

J. Amici, M. U. Kahveci, P. Allia, P. Tiberto, Y. Yagci, and M. Sangermano, “Polymer Grafting Onto Magnetite Nanoparticles by ‘Click’ Reaction,” Journal of Materials Science 47 (2012): 412–419, https://doi.org/10.1007/s10853‐011‐5814‐z.

C. Flesch, C. Delaite, P. Dumas, E. Bourgeat‐Lami, and E. Duguet, “Grafting of Poly(ε‐Caprolactone) Onto Maghemite Nanoparticles,” Journal of Polymer Science Part A: Polymer Chemistry 42 (2004): 6011–6020, https://doi.org/10.1002/pola.20449.

A. Nan, R. Turcu, I. Craciunescu, O. Pana, H. Scharf, and J. Liebscher, “Microwave‐Assisted Graft Polymerization of ε‐Caprolactone Onto Magnetite,” Journal of Polymer Science Part A: Polymer Chemistry 47 (2009): 5397–5404, https://doi.org/10.1002/pola.23589.

J. A. Matthews, E. D. Boland, G. E. Wnek, D. G. Simpson, and G. L. Bowlin, “Electrospinning of Collagen Type II: A Feasibility Study,” Journal of Bioactive and Compatible Polymers 18 (2003): 125–134, https://doi.org/10.1177/088391103033856.

P. X. Ma and R. Zhang, “Synthetic Nanoscale Fibrous Matrix,” Journal of Biomedical Materials Research 46 (1999): 60–72, https://doi.org/10.1002/(SICI)1097‐4636(199907)46:1<60::AID‐JBM7>3.0.CO;2‐H.

Z. A. Al‐Ahmed, B. A. Al Jahdaly, H. A. Radwan, et al., “Electrospun Nanofibrous Scaffolds of ε‐Polycaprolactone Containing Graphene Oxide and Encapsulated With Magnetite Nanoparticles for Wound Healing Utilizations,” Materials Research Express 8 (2021): 025013, https://doi.org/10.1088/2053‐1591/abe42b.

J. Eom, Y. Kwak, and C. Nam, “Electrospinning Fabrication of Magnetic Nanoparticles‐Embedded Polycaprolactone (PCL) Sorbent With Enhanced Sorption Capacity and Recovery Speed for Spilled Oil Removal,” Chemosphere 303 (2022): 135063, https://doi.org/10.1016/j.chemosphere.2022.135063.

V. Rezaei, E. Mirzaei, S.‐M. Taghizadeh, A. Berenjian, and A. Ebrahiminezhad, “Nano Iron Oxide‐PCL Composite as an Improved Soft Tissue Scaffold,” Processes 9 (2021): 1559, https://doi.org/10.3390/pr9091559.

R. K. Singh, K. D. Patel, J. H. Lee, et al., “Potential of Magnetic Nanofiber Scaffolds With Mechanical and Biological Properties Applicable for Bone Regeneration,” PLoS One 9 (2014): e91584, https://doi.org/10.1371/journal.pone.0091584.

V. Kupka, E. Dvořáková, A. Manakhov, et al., “Well‐Blended PCL/PEO Electrospun Nanofibers With Functional Properties Enhanced by Plasma Processing,” Polymers 12 (2020): 1403, https://doi.org/10.3390/polym12061403.

F. Yongcong, T. Zhang, L. Liverani, A. R. Boccaccini, and W. Sun, “Novel Biomimetic Fiber Incorporated Scaffolds for Tissue Engineering,” Journal of Biomedical Materials Research Part A 107 (2019): 2694–2705, https://doi.org/10.1002/jbm.a.36773.

D. Chicot, J. Mendoza, A. Zaoui, et al., “Mechanical Properties of Magnetite (Fe3O4), Hematite (α‐Fe2O3) and Goethite (α‐FeO·OH) by Instrumented Indentation and Molecular Dynamics Analysis,” Materials Chemistry and Physics 129 (2011): 862–870, https://doi.org/10.1016/j.matchemphys.2011.05.056.

M. Świętek, A. Brož, A. Kołodziej, et al., “Magnetic Poly(ε‐Caprolactone)‐Based Nanocomposite Membranes for Bone Cell Engineering,” Journal of Magnetism and Magnetic Materials 563 (2022): 169967, https://doi.org/10.1016/j.jmmm.2022.169967.

M. Świętek, A. Brož, J. Tarasiuk, et al., “Carbon Nanotube/Iron Oxide Hybrid Particles and Their PCL‐Based 3D Composites for Potential Bone Regeneration,” Materials Science and Engineering: C 104 (2019): 109913, https://doi.org/10.1016/j.msec.2019.109913.

M. Eesaee, A. J. Müller, P. O'Reilly, R. E. Prud'homme, and P. Nguyen‐Tri, “Miscibility, Morphology, and Crystallization Kinetics of Biodegradable Poly(ε‐Caprolactone)/Ascorbic Acid Blends,” ACS Applied Polymer Materials 4 (2022): 301–312, https://doi.org/10.1021/acsapm.1c01307.

L. C. Xu and C. A. Siedlecki, “Effects of Surface Wettability and Contact Time on Protein Adhesion to Biomaterial Surfaces,” Biomaterials 28 (2007): 3273–3283, https://doi.org/10.1016/j.biomaterials.2007.03.032.

L. Bacakova, E. Filova, M. Parizek, T. Ruml, and V. Svorcik, “Modulation of Cell Adhesion, Proliferation and Differentiation on Materials Designed for Body Implants,” Biotechnology Advances 29 (2011): 739–767, https://doi.org/10.1016/j.biotechadv.2011.06.004.

L. N. Woodard and M. A. Grunlan, “Hydrolytic Degradation and Erosion of Polyester Biomaterials,” ACS Macro Letters 7 (2018): 976–982, https://doi.org/10.1021/acsmacrolett.8b00424.

M. Dziadek, J. Pawlik, E. Menaszek, E. Stodolak‐Zych, and K. Cholewa‐Kowalska, “Effect of the Preparation Methods on Architecture, Crystallinity, Hydrolytic Degradation, Bioactivity, and Biocompatibility of PCL/Bioglass Composite Scaffolds,” Journal of Biomedical Materials Research Part B: Applied Biomaterials 103 (2015): 1580–1593, https://doi.org/10.1002/jbm.b.33350.

O. Gil‐Castell, J. D. Badia, J. Bou, and A. Ribes‐Greus, “Performance of Polyester‐Based Electrospun Scaffolds Under in Vitro Hydrolytic Conditions: From Short‐Term to Long‐Term Applications,” Nanomaterials 9 (2019): 786, https://doi.org/10.3390/nano9050786.

X. Yin, K. Chen, H. Cheng, et al., “Chemical Stability of Ascorbic Acid Integrated Into Commercial Products: A Review on Bioactivity and Delivery Technology,” Antioxidants 11 (2022): 153, https://doi.org/10.3390/antiox11010153.

H. Wang, Y. Xia, J. Liu, Z. Ma, Q. Shi, and J. Yin, “Programmable Release of 2‐O‐D‐Glucopyranosyl‐L‐Ascorbic Acid and Heparin From PCL‐Based Nanofiber Scaffold for Reduction of Inflammation and Thrombosis,” Materials Today Chemistry 17 (2020): 100303, https://doi.org/10.1016/j.mtchem.2020.100303.

V. Vivcharenko, M. Wojcik, and A. Przekora, “Cellular Response to Vitamin C‐Enriched Chitosan/Agarose Film With Potential Application as Artificial Skin Substitute for Chronic Wound Treatment,” Cells 9 (2020): 1185, https://doi.org/10.3390/cells9051185.

M. Wojcik, P. Kazimierczak, V. Vivcharenko, M. Koziol, and A. Przekora, “Effect of Vitamin C/Hydrocortisone Immobilization Within Curdlan‐Based Wound Dressings on in Vitro Cellular Response in Context of the Management of Chronic and Burn Wounds,” International Journal of Molecular Sciences 22 (2021): 11474, https://doi.org/10.3390/ijms222111474.

A. F. Chen, C. B. Wessel, and N. Rao, “Staphylococcus aureus Screening and Decolonization in Orthopaedic Surgery and Reduction of Surgical Site Infections Infection,” Clinical Orthopaedics and Related Research 471 (2013): 2383–2399, https://doi.org/10.1007/s11999‐013‐2875‐0.

L. Crémet, A. Broquet, B. Brulin, et al., “Pathogenic Potential of Escherichia coli Clinical Strains From Orthopedic Implant Infections Towards Human Osteoblastic Cells,” Pathogens and Disease 73 (2015): ftv065, https://doi.org/10.1093/femspd/ftv065.

J. C. Martínez‐Pastor, F. Vilchez, C. Pitart, J. M. Sierra, and A. Soriano, “Antibiotic Resistance in Orthopaedic Surgery: Acute Knee Prosthetic Joint Infections Due to Extended‐Spectrum Beta‐Lactamase (ESBL)‐Producing Enterobacteriaceae,” European Journal of Clinical Microbiology & Infectious Diseases 29 (2010): 1039–1041, https://doi.org/10.1007/s10096‐010‐0950‐y.

I. Uçkay, D. Pires, A. Agostinho, et al., “Enterococci in Orthopaedic Infections: Who Is at Risk Getting Infected?” Journal of Infection 75 (2017): 309–314, https://doi.org/10.1016/j.jinf.2017.06.008.

B. C. Prokesch, M. TeKippe, J. Kim, P. Raj, E. M. TeKippe, and D. E. Greenberg, “Primary Osteomyelitis Caused by Hypervirulent Klebsiella pneumoniae,” Lancet Infectious Diseases 16 (2016): e190–e195, https://doi.org/10.1016/S1473‐3099(16)30021.

M. Till, R. L. Wixsonand, and P. E. Pertel, “Linezolid Treatment for Osteomyelitis Due to Vancomycin‐Resistant Enterococcus faecium,” Clinical Infectious Diseases 34 (2002): 1412–1414, https://doi.org/10.1086/340265.

E. Campos, L. De la Riva, F. Garces, et al., “The yiaKLX1X2PQRS and ulaABCDEFG Gene Systems Are Required for the Aerobic Utilization of L‐Ascorbate in Klebsiella pneumoniae Strain 13882 With L‐Ascorbate‐6‐Phosphate as the Inducer,” Journal of Bacteriology 190 (2008): 6615–6624, https://doi.org/10.1128/JB.00815‐08.

I. Mehmeti, M. Solheim, I. F. Nes, and H. Holo, “Enterococcus faecalis Grows on Ascorbic Acid,” Applied and Environmental Microbiology 79 (2013): 4756–4758, https://doi.org/10.1128/AEM.00228‐13.

J. Przekwas, N. Wiktorczyk, A. Budzyńska, E. Wałecka‐Zacharska, and E. Gospodarek‐Komkowska, “Ascorbic Acid Changes Growth of Food‐Borne Pathogens in the Early Stage of Biofilm Formation,” Microorganisms 8 (2020): 553, https://doi.org/10.3390/microorganisms8040553.

N. A. Hassuna, E. M. Rabie, W. K. M. Mahd, M. M. M. Refaie, R. K. M. Yousef, and W. M. Abdelraheem, “Antibacterial Effect of Vitamin C Against Uropathogenic E. coli in Vitro and in Vivo,” BMC Microbiology 23 (2023): 112, https://doi.org/10.1186/s12866‐023‐02856‐3.

J. Kallio, M. Jaakkola, M. Mäki, P. Kilpeläinen, and V. Virtanen, “Vitamin C Inhibits Staphylococcus aureus Growth and Enhances the Inhibitory Effect of Quercetin on Growth of Escherichia coli in Vitro,” Planta Medica 78 (2012): 1824–1830, https://doi.org/10.1055/s‐0032‐1315388.

A. Cmoch, P. Podszywalow‐Bartnicka, M. Palczewska, K. Piwocka, P. Groves, and S. Pikula, “Stimulators of Mineralization Limit the Invasive Phenotype of Human Osteosarcoma Cells by a Mechanism Involving Impaired Invadopodia Formation,” PLoS One 9 (2014): e109938, https://doi.org/10.1371/journal.pone.0109938.

M. T. Valenti, M. Zanatta, L. Donatelli, et al., “Ascorbic Acid Induces Either Differentiation or Apoptosis in MG‐63 Osteosarcoma Lineage,” Anticancer Research 34 (2014): 1617–1627.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...