Web of venom: exploration of big data resources in animal toxin research
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
European Cooperation in Science and Technology
Fundação para a Ciência e a Tecnologia
PubMed
39250076
PubMed Central
PMC11382406
DOI
10.1093/gigascience/giae054
PII: 7753515
Knihovny.cz E-zdroje
- Klíčová slova
- antivenom, drug discovery, genomics, machine learning, peptidomics, proteomics, toxin databases, transcriptomics, venom resources,
- MeSH
- big data * MeSH
- databáze faktografické MeSH
- internet * MeSH
- výpočetní biologie * metody MeSH
- živočišné jedy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- živočišné jedy * MeSH
Research on animal venoms and their components spans multiple disciplines, including biology, biochemistry, bioinformatics, pharmacology, medicine, and more. Manipulating and analyzing the diverse array of data required for venom research can be challenging, and relevant tools and resources are often dispersed across different online platforms, making them less accessible to nonexperts. In this article, we address the multifaceted needs of the scientific community involved in venom and toxin-related research by identifying and discussing web resources, databases, and tools commonly used in this field. We have compiled these resources into a comprehensive table available on the VenomZone website (https://venomzone.expasy.org/10897). Furthermore, we highlight the challenges currently faced by researchers in accessing and using these resources and emphasize the importance of community-driven interdisciplinary approaches. We conclude by underscoring the significance of enhancing standards, promoting interoperability, and encouraging data and method sharing within the venom research community.
Department of Agricultural Sciences University Federico 2 of Naples 80055 Portici Naples Italy
Department of Biology Faculty of Science Eskisehir Osmangazi University 26040 Eskişehir Turkey
Department of Biology Faculty of Sciences University of Porto 4169 007 Porto Portugal
Department of Ecology and Evolution University of Lausanne 1015 Lausanne Switzerland
Department of Medical Sciences iBiMED University of Aveiro 3810 193 Aveiro Portugal
Engineering Faculty Bioengineering Department Ege University 35100 Bornova Izmir Turkey
Goethe University Frankfurt Faculty of Biological Sciences 60438 Frankfurt Germany
Institute of Research on Terrestrial Ecosystems 73100 Lecce Italy
LOEWE Centre for Translational Biodiversity Genomics 60325 Frankfurt Germany
Malta National Poisons Centre Malta Life Sciences Park 3000 San Ġwann Malta
Neuroscience Institute National Research Council 35131 Padua Italy
SIB Swiss Institute of Bioinformatics 1015 Lausanne Switzerland
SIB Swiss Institute of Bioinformatics Swiss Prot Group 1211 Geneva Switzerland
Veterinary Center for Resistance Research Freie Universität Berlin 14163 Berlin Germany
Zobrazit více v PubMed
Schendel V, Rash LD, Jenner RA, et al. . The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins. 2019;11:666. 10.3390/toxins11110666. PubMed DOI PMC
Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2:790–802. 10.1038/nrd1197. PubMed DOI
Holford M, Daly M, King GF, et al. . Venoms to the rescue. Science. 2018;361:842–44. 10.1126/science.aau7761. PubMed DOI
Herzig V, Cristofori-Armstrong B, Israel MR, et al. . Animal toxins—nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol. 2020;181:114096.10.1016/j.bcp.2020.114096. PubMed DOI PMC
Waheed H, Moin SF, Choudhary MI. Snake venom: from deadly toxins to life-saving therapeutics. Curr Med Chem. 2017;24:1874–91. 10.2174/0929867324666170605091546. PubMed DOI
Talukdar A, Maddhesiya P, Namsa ND, et al. . Snake venom toxins targeting the central nervous system. Toxin Rev. 2023;42:382–406. 10.1080/15569543.2022.2084418. DOI
Oliveira AL, Viegas MF, da Silva SL, et al. . The chemistry of snake venom and its medicinal potential. Nat Rev Chem. 2022;6:451–69. 10.1038/s41570-022-00393-7. PubMed DOI PMC
Marsh NA. Diagnostic uses of snake venom. Pathophysiol Haemos Thromb. 2001;31:211–17. 10.1159/000048065. PubMed DOI
Estevão-Costa M-I, Sanz-Soler R, Johanningmeier B, et al. . Snake venom components in medicine: from the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol. 2018;104:94–113. 10.1016/j.biocel.2018.09.011. PubMed DOI
Windley MJ, Herzig V, Dziemborowicz SA, et al. . Spider-venom peptides as bioinsecticides. Toxins. 2012;4:191–227. 10.3390/toxins4030191. PubMed DOI PMC
King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58:475–96. 10.1146/annurev-ento-120811-153650. PubMed DOI
Modahl CM, Brahma RK, Koh CY, et al. . Omics technologies for profiling toxin diversity and evolution in snake venom: impacts on the discovery of therapeutic and diagnostic agents. Annu Rev Anim Biosci. 2020;8:91–116. 10.1146/annurev-animal-021419-083626. PubMed DOI
Dutertre S, Lewis RJ. Use of venom peptides to probe ion channel structure and function. J Biol Chem. 2010;285:13315–20. 10.1074/jbc.R109.076596. PubMed DOI PMC
von Reumont BM, Anderluh G, Antunes A, et al. . Modern venomics—current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience. 2022;11:giac048. 10.1093/gigascience/giac048. PubMed DOI PMC
VenomZone Web Resources . https://venomzone.expasy.org/10897. Accessed 9 July 2024.
Modica MV, Ahmad R, Ainsworth S, et al. . The new COST Action European Venom Network (EUVEN)—synergy and future perspectives of modern venomics. Gigascience. 2021;10:giab019.10.1093/gigascience/giab019. PubMed DOI PMC
Perez-Riverol Y, Bai J, Bandla C, et al. . The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–52. 10.1093/nar/gkab1038. PubMed DOI PMC
Pineda SS, Chaumeil P-A, Kunert A, et al. . ArachnoServer 3.0: an online resource for automated discovery, analysis and annotation of spider toxins. Bioinformatics. 2018;34:1074–76. 10.1093/bioinformatics/btx661. PubMed DOI
Kaas Q, Yu R, Jin A-H, et al. . ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012;40:D325–30. 10.1093/nar/gkr886. PubMed DOI PMC
Jungo F, Bougueleret L, Xenarios I, et al. . The UniProtKB/Swiss-Prot Tox-Prot program: a central hub of integrated venom protein data. Toxicon. 2012;60:551–57. 10.1016/j.toxicon.2012.03.010. PubMed DOI PMC
Duvaud S, Gabella C, Lisacek F, et al. . Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021;49:W216–27. 10.1093/nar/gkab225. PubMed DOI PMC
wwPDB Consortium . Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019;47:D520–28. 10.1093/nar/gky949. PubMed DOI PMC
Romero PR, Kobayashi N, Wedell JR, et al. . BioMagResBank (BMRB) as a resource for structural biology. In: Gáspári Z, ed. Structural Bioinformatics: Methods and Protocols. New York: Springer US; 2020:187–218. 10.1007/978-1-0716-0270-6_14. PubMed DOI PMC
The wwPDB Consortium . EMDB—The Electron Microscopy Data Bank. Nucleic Acids Res. 2024;52:D456–65. 10.1093/nar/gkad1019. PubMed DOI PMC
Haji-Ghassemi O, Chen YS, Woll K, et al. . Cryo-EM analysis of scorpion toxin binding to ryanodine receptors reveals subconductance that is abolished by PKA phosphorylation. Sci Adv. 2023;9:eadf4936. 10.1126/sciadv.adf4936. PubMed DOI PMC
Nys M, Zarkadas E, Brams M, et al. . The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat Commun. 2022;13:4543. 10.1038/s41467-022-32174-7. PubMed DOI PMC
Varadi M, Anyango S, Deshpande M, et al. . AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–44. 10.1093/nar/gkab1061. PubMed DOI PMC
Jumper J, Evans R, Pritzel A, et al. . Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–89. 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. 10.1093/nar/28.1.27. PubMed DOI PMC
Ashburner M, Ball CA, Blake JA, et al. . Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. 10.1038/75556. PubMed DOI PMC
Kim S, Chen J, Cheng T, et al. . PubChem 2023 update. Nucleic Acids Res. 2023;51:D1373–80. 10.1093/nar/gkac956. PubMed DOI PMC
Krylov NA, Tabakmakher VM, Yureva DA, et al. . Kalium 3.0 is a comprehensive depository of natural, artificial, and labeled polypeptides acting on potassium channels. Protein Sci. 2023;32:e4776. 10.1002/pro.4776. PubMed DOI PMC
Postic G, Gracy J, Périn C, et al. . KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res. 2018;46:D454–58. 10.1093/nar/gkx1084. PubMed DOI PMC
Liu J, Maxwell M, Cuddihy T, et al. . ScrepYard: an online resource for disulfide-stabilized tandem repeat peptides. Protein Sci. 2023;32:e4566. 10.1002/pro.4566. PubMed DOI PMC
Jungo F, Estreicher A, Bairoch A, et al. . Animal toxins: how is complexity represented in databases?. Toxins. 2010;2:262–82. 10.3390/toxins2020261. PubMed DOI PMC
Tan PTJ, Veeramani A, Srinivasan KN, et al. . SCORPION2: a database for structure-function analysis of scorpion toxins. Toxicon. 2006;47:356–63. 10.1016/j.toxicon.2005.12.001. PubMed DOI
He Q-Y, He Q-Z, Deng X-C, et al. . ATDB: a uni-database platform for animal toxins. Nucleic Acids Res. 2008;36:D293–97. 10.1093/nar/gkm832. PubMed DOI PMC
Forster YM, Reusser S, Forster F, et al. . VenoMS—a website for the low molecular mass compounds in spider venoms. Metabolites. 2020;10:327. 10.3390/metabo10080327. PubMed DOI PMC
Wishart D, Arndt D, Pon A, et al. . T3DB: the toxic exposome database. Nucleic Acids Res. 2015;43:D928–34. 10.1093/nar/gku1004. PubMed DOI PMC
VenomZone . https://venomzone.expasy.org/. Accessed 9 July 2024.
The Galaxy Community . The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022;50:W345–51. 10.1093/nar/gkac247. PubMed DOI PMC
Perry BW, Gopalan SS, Pasquesi GIM, et al. . Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways. Genome Res. 2022;32:1058–73. 10.1101/gr.276251.121. PubMed DOI PMC
Dowell NL, Giorgianni MW, Kassner VA, et al. . The deep origin and recent loss of venom toxin genes in rattlesnakes. Curr Biol. 2016;26:2434–45. 10.1016/j.cub.2016.07.038. PubMed DOI PMC
Vonk FJ, Casewell NR, Henkel CV, et al. . The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA. 2013;110:20651–56. 10.1073/pnas.1314702110. PubMed DOI PMC
Schield DR, Card DC, Hales NR, et al. . The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res. 2019;29:590–601. 10.1101/gr.240952.118. PubMed DOI PMC
Drukewitz SH, von Reumont BM. The significance of comparative genomics in modern evolutionary venomics. Front Ecol Evol. 2019;7:163. https://www.frontiersin.org/articles/10.3389/fevo.2019.00163. DOI
Grabherr MG, Haas BJ, Yassour M, et al. . Trinity: Reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat Biotechnol. 2011;29:644–52. 10.1038/nbt.1883. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–59. 10.1038/nmeth.1923. PubMed DOI PMC
Kim D, Paggi JM, Park C, et al. . Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. 10.1038/s41587-019-0201-4. PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, et al. . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC
Kim D, Pertea G, Trapnell C, et al. . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. 10.1186/gb-2013-14-4-r36. PubMed DOI PMC
Musich R, Cadle-Davidson L, Osier MV. Comparison of short-read sequence aligners indicates strengths and weaknesses for biologists to consider. Front Plant Sci. 2021;12:657240. 10.3389/fpls.2021.657240. PubMed DOI PMC
Amarasinghe SL, Su S, Dong X, et al. . Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30. 10.1186/s13059-020-1935-5. PubMed DOI PMC
Wang Y, Zhao Y, Bollas A, et al. . Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39:1348–65. 10.1038/s41587-021-01108-x. PubMed DOI PMC
Larivière D, Abueg L, Brajuka N, et al. . Scalable, accessible and reproducible reference genome assembly and evaluation in Galaxy. Nat Biotechnol. 2024;42:367–70. 10.1038/s41587-023-02100-3. PubMed DOI
Cunningham F, Allen JE, Allen J, et al. . Ensembl 2022. Nucleic Acids Res. 2022;50:D988–95. 10.1093/nar/gkab1049. PubMed DOI PMC
Rhie A, McCarthy SA, Fedrigo O, et al. . Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–46. 10.1038/s41586-021-03451-0. PubMed DOI PMC
Koepfli K-P, Paten B, Genome 10 K Community of Scientists , et al. The Genome 10 K Project: a way forward. Annu Rev Anim Biosci. 2015;3:57–111. 10.1146/annurev-animal-090414-014900. PubMed DOI PMC
Voolstra CR, Woerheide G, Lopez JV, et al. . Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invert Systematics. 2017;31:1–7. 10.1071/IS16059. PubMed DOI PMC
Lewin HA, Robinson GE, Kress WJ, et al. . Earth BioGenome Project: sequencing life for the future of life. Proc Natl Acad Sci USA. 2018;115:4325–33. 10.1073/pnas.1720115115. PubMed DOI PMC
Formenti G, Theissinger K, Fernandes C, et al. . The era of reference genomes in conservation genomics. Trends Ecol Evol. 2022;37:197–202. 10.1016/j.tree.2021.11.008. PubMed DOI
The Darwin Tree of Life Project Consortium . Sequence locally, think globally: the Darwin Tree of Life Project. Proc Natl Acad Sci USA. 2022;119:e2115642118.10.1073/pnas.2115642118. PubMed DOI PMC
Zhang G, Li C, Li Q, et al. . Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346:1311–20. 10.1126/science.1251385. PubMed DOI PMC
Zimmermann B, Montenegro JD, Robb SMC, et al. . Topological structures and syntenic conservation in sea anemone genomes. Nat Commun. 2023;14:8270. 10.1038/s41467-023-44080-7. PubMed DOI PMC
Kon-Nanjo K, Kon T, Horkan HR, et al. . Chromosome-level genome assembly of hydractinia symbiolongicarpus. G3 (Bethesda). 2023;13:jkad107.10.1093/g3journal/jkad107. PubMed DOI PMC
Chapman JA, Kirkness EF, Simakov O, et al. . The dynamic genome of Hydra. Nature. 2010;464:592–96. 10.1038/nature08830. PubMed DOI PMC
Putnam NH, Srivastava M, Hellsten U, et al. . Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317:86–94. 10.1126/science.1139158. PubMed DOI
Shinzato C, Shoguchi E, Kawashima T, et al. . Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476:320–23. 10.1038/nature10249. PubMed DOI
Baumgarten S, Simakov O, Esherick LY, et al. . The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci USA. 2015;112:11893–98. 10.1073/pnas.1513318112. PubMed DOI PMC
Bhattacharya D, Agrawal S, Aranda M, et al. . Comparative genomics explains the evolutionary success of reef-forming corals. eLife. 2016;5:e13288.10.7554/eLife.13288. PubMed DOI PMC
Grimson A, Srivastava M, Fahey B, et al. . Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455:1193–97. 10.1038/nature07415. PubMed DOI PMC
Moran Y, Fredman D, Praher D, et al. . Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 2014;24:651–63. 10.1101/gr.162503.113. PubMed DOI PMC
Schwaiger M, Schönauer A, Rendeiro AF, et al. . Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 2014;24:639–50. 10.1101/gr.162529.113. PubMed DOI PMC
Cazet JF, Siebert S, Little HM, et al. . A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state. Genome Res. 2023;33:283–98. 10.1101/gr.277040.122. PubMed DOI PMC
Jackson TNW, Koludarov I. How the toxin got its toxicity. Front Pharmacol. 2020;11:574925.10.3389/fphar.2020.574925. PubMed DOI PMC
Koludarov I, Velasque M, Senoner T, et al. . Prevalent bee venom genes evolved before the aculeate stinger and eusociality. BMC Biol. 2023;21:229. 10.1186/s12915-023-01656-5. PubMed DOI PMC
Koludarov I, Senoner T, Jackson TNW, et al. . Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily. Nat Commun. 2023;14:4861.10.1038/s41467-023-40550-0. PubMed DOI PMC
Fuentes D, Molina M, Chorostecki U, et al. . PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies. Nucleic Acids Res. 2022;50:D1062–68. 10.1093/nar/gkab966. PubMed DOI PMC
Nachtigall PG, Durham AM, Rokyta DR, et al. . ToxCodAn-genome: an automated pipeline for toxin-gene annotation in genome assembly of venomous lineages. Gigascience. 2024;13:giad116.10.1093/gigascience/giad116. PubMed DOI PMC
Hogan MP, Holding ML, Nystrom GS, et al. . The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci USA. 2024;121:e2313440121. 10.1073/pnas.2313440121. PubMed DOI PMC
Li D, Purushotham D, Harrison JK, et al. . WashU Epigenome Browser update 2022. Nucleic Acids Res. 2022;50:W774–81. 10.1093/nar/gkac238. PubMed DOI PMC
Bryant DM, Johnson K, DiTommaso T, et al. . A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 2017;18:762–76. 10.1016/j.celrep.2016.12.063. PubMed DOI PMC
MacManes MD. The Oyster River Protocol: a multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ. 2018;6:e5428. 10.7717/peerj.5428. PubMed DOI PMC
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. 10.1093/nar/gkr367. PubMed DOI PMC
Blum M, Chang H-Y, Chuguransky S, et al. . The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49:D344–54. 10.1093/nar/gkaa977. PubMed DOI PMC
Mistry J, Chuguransky S, Williams L, et al. . Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–19. 10.1093/nar/gkaa913. PubMed DOI PMC
Wang J, Chitsaz F, Derbyshire MK, et al. . The conserved domain database in 2023. Nucleic Acids Res. 2023;51:D384–88. 10.1093/nar/gkac1096. PubMed DOI PMC
Agüero-Chapin G, Domínguez-Pérez D, Marrero-Ponce Y, et al. . Unveiling encrypted antimicrobial peptides from cephalopods’ salivary glands: a proteolysis-driven virtual approach. ACS Omega. 2024. 10.1021/acsomega.4c01959. DOI
Macrander J, Panda J, Janies D, et al. . Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data. PeerJ. 2018;6:e5361.10.7717/peerj.5361. PubMed DOI PMC
Gacesa R, Barlow DJ, Long PF. Machine learning can differentiate venom toxins from other proteins having non-toxic physiological functions. Peer J Comput Sci. 2016;2:e90. 10.7717/peerj-cs.90. DOI
Cole TJ, Brewer MS. TOXIFY: a deep learning approach to classify animal venom proteins. PeerJ. 2019;7:e7200.10.7717/peerj.7200. PubMed DOI PMC
Ringeval A, Farhat S, Fedosov A, et al. . DeTox: a pipeline for the detection of toxins in venomous organisms. Briefings Bioinf. 2024;25:bbae094. 10.1093/bib/bbae094. PubMed DOI PMC
Pan X, Zuallaert J, Wang X, et al. . ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics. 2021;36:5159–68. 10.1093/bioinformatics/btaa656. PubMed DOI
Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 2018;46:W84–88. 10.1093/nar/gky350. PubMed DOI PMC
Zancolli G, Reijnders M, Waterhouse RM, et al. . Convergent evolution of venom gland transcriptomes across Metazoa. Proc Natl Acad Sci USA. 2022;119:e2111392119.10.1073/pnas.2111392119. PubMed DOI PMC
Perry BW, Schield DR, Westfall AK, et al. . Physiological demands and signaling associated with snake venom production and storage illustrated by transcriptional analyses of venom glands. Sci Rep. 2020;10:18083. 10.1038/s41598-020-75048-y. PubMed DOI PMC
Haney RA, Ayoub NA, Clarke TH, et al. . Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics. 2014;15:366.10.1186/1471-2164-15-366. PubMed DOI PMC
Bray NL, Pimentel H, Melsted P, et al. . Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–27. 10.1038/nbt.3519. PubMed DOI
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. 10.1093/bioinformatics/btp616. PubMed DOI PMC
Tan CH, Tan KY, Tan NH. De novo assembly of venom gland transcriptome of Tropidolaemus wagleri (Temple pit viper, Malaysia) and insights into the origin of its major toxin, waglerin. Toxins. 2023;15:585.10.3390/toxins15090585. PubMed DOI PMC
So WL, Leung TCN, Nong W, et al. . Transcriptomic and proteomic analyses of venom glands from scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus. Peptides. 2021;146:170643. 10.1016/j.peptides.2021.170643. PubMed DOI
Menk JJ, Matuhara YE, Sebestyen-França H, et al. . Antimicrobial peptide arsenal predicted from the venom gland transcriptome of the tropical trap-jaw ant Odontomachus chelifer. Toxins. 2023;15:345.10.3390/toxins15050345. PubMed DOI PMC
Xie B, Yu H, Kerkkamp H, et al. . Comparative transcriptome analyses of venom glands from three scorpionfishes. Genomics. 2019;111:231–41. 10.1016/j.ygeno.2018.11.012. PubMed DOI
Ramírez DS, Alzate JF, Simone Y, et al. . Intersexual differences in the gene expression of Phoneutria depilata (Araneae, Ctenidae) toxins revealed by venom gland transcriptome analyses. Toxins. 2023;15:429. 10.3390/toxins15070429. PubMed DOI PMC
Chen C, Hou J, Tanner JJ, et al. . Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci. 2020;21:2873.10.3390/ijms21082873. PubMed DOI PMC
Perkins DN, Pappin DJC, Creasy DM, et al. . Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67. 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PubMed DOI
Zhang J, Xin L, Shan B, et al. . PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics. 2012;11:M111.010587. 10.1074/mcp.M111.010587. PubMed DOI PMC
Orsburn BC. Proteome discoverer—a community enhanced data processing suite for protein informatics. Proteomes. 2021;9:15.10.3390/proteomes9010015. PubMed DOI PMC
Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–89. 10.1016/1044-0305(94)80016-2. PubMed DOI
Bern M, Kil YJ, Byonic BC. Advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012;40:13.20.1–13.20.14. 10.1002/0471250953.bi1320s40. PubMed DOI PMC
Chi H, Liu C, Yang H, et al. . Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol. 2018;36:1059–61. 10.1038/nbt.4236. PubMed DOI
Kong AT, Leprevost FV, Avtonomov DM, et al. . MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods. 2017;14:513–20. 10.1038/nmeth.4256. PubMed DOI PMC
Vaudel M, Burkhart JM, Zahedi RP, et al. . PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol. 2015;33:22–24. 10.1038/nbt.3109. PubMed DOI
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72. 10.1038/nbt.1511. PubMed DOI
MacLean B, Tomazela DM, Shulman N, et al. . Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–68. 10.1093/bioinformatics/btq054. PubMed DOI PMC
Demichev V, Messner CB, Vernardis SI, et al. . DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–44. 10.1038/s41592-019-0638-x. PubMed DOI PMC
Sinitcyn P, Hamzeiy H, Salinas Soto F, et al. . MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat Biotechnol. 2021;39:1563–73. 10.1038/s41587-021-00968-7. PubMed DOI PMC
Doerr A. DIA mass spectrometry. Nat Methods. 2015;12:35.10.1038/nmeth.3234. DOI
Ma B. Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom. 2015;26:1885–94. 10.1007/s13361-015-1204-0. PubMed DOI PMC
Yang H, Chi H, Zeng W-F, et al. . pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework. Bioinformatics. 2019;35:i183–90. 10.1093/bioinformatics/btz366. PubMed DOI PMC
Melani RD, Nogueira FCS, Domont GB. It is time for top-down venomics. J Venom Anim Toxins Incl Trop Dis. 2017;23:44.10.1186/s40409-017-0135-6. PubMed DOI PMC
Röst HL, Sachsenberg T, Aiche S, et al. . OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–48. 10.1038/nmeth.3959. PubMed DOI
Schmid R, Heuckeroth S, Korf A, et al. . Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol. 2023;41:447–49. 10.1038/s41587-023-01690-2. PubMed DOI PMC
Liu X, Inbar Y, Dorrestein PC, et al. . Deconvolution and database search of complex tandem mass spectra of intact proteins. Mol Cell Proteomics. 2010;9:2772–82. 10.1074/mcp.M110.002766. PubMed DOI PMC
Adusumilli R, Mallick P. Data conversion with ProteoWizard msConvert. In: Comai L, Katz JE, Mallick P, eds. Proteomics: Methods and Protocols. New York: Springer US; 2017:339–68. 10.1007/978-1-4939-6747-6_23. PubMed DOI
Liu X, Sirotkin Y, Shen Y, et al. . Protein identification using top-down spectra. Mol Cell Proteomics. 2012;11:M111.008524. 10.1074/mcp.M111.008524. PubMed DOI PMC
Guner H, Close PL, Cai W, et al. . MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization. J Am Soc Mass Spectrom. 2014;25:464–70. 10.1007/s13361-013-0789-4. PubMed DOI PMC
Sun R-X, Luo L, Wu L, et al. . pTop 1.0: a high-accuracy and high-efficiency search engine for intact protein identification. Anal Chem. 2016;88:3082–90. 10.1021/acs.analchem.5b03963. PubMed DOI
Kou Q, Wu S, Tolić N, et al. . A mass graph-based approach for the identification of modified proteoforms using top-down tandem mass spectra. Bioinformatics. 2017;33:1309–16. 10.1093/bioinformatics/btw806. PubMed DOI PMC
Kou Q, Xun L, Liu X. TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics. 2016;32:3495–97. 10.1093/bioinformatics/btw398. PubMed DOI PMC
Park J, Piehowski PD, Wilkins C, et al. . Informed-Proteomics: open-source software package for top-down proteomics. Nat Methods. 2017;14:909–14. 10.1038/nmeth.4388. PubMed DOI PMC
Gupta S, Kapoor P, Chaudhary K, et al. . In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8:e73957.10.1371/journal.pone.0073957. PubMed DOI PMC
Sharma N, Naorem LD, Jain S, et al. . ToxinPred2: an improved method for predicting toxicity of proteins. Brief Bioinform. 2022;23:bbac174. 10.1093/bib/bbac174. PubMed DOI
Mooney C, Haslam NJ, Pollastri G, et al. . Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One. 2012;7:e45012.10.1371/journal.pone.0045012. PubMed DOI PMC
Lamiable A, Thévenet P, Rey J, et al. . PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016;44:W449–54. 10.1093/nar/gkw329. PubMed DOI PMC
Rey J, Murail S, de Vries S, et al. . PEP-FOLD4: a pH-dependent force field for peptide structure prediction in aqueous solution. Nucleic Acids Res. 2023;51:W432–37. 10.1093/nar/gkad376. PubMed DOI PMC
Mirdita M, Schütze K, Moriwaki Y, et al. . ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82. 10.1038/s41592-022-01488-1. PubMed DOI PMC
Baek M, DiMaio F, Anishchenko I, et al. . Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–76. 10.1126/science.abj8754. PubMed DOI PMC
Källberg M, Wang H, Wang S, et al. . Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7:1511–22. 10.1038/nprot.2012.085. PubMed DOI PMC
Choi M, Carver J, Chiva C, et al. . MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat Methods. 2020;17:981–84. 10.1038/s41592-020-0955-0. PubMed DOI PMC
Wishart DS, Tzur D, Knox C, et al. . HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–26. 10.1093/nar/gkl923. PubMed DOI PMC
Alonso LL, Slagboom J, Casewell NR, et al. . Metabolome-based classification of snake venoms by bioinformatic tools. Toxins. 2023;15:161.10.3390/toxins15020161. PubMed DOI PMC
Wang M, Carver JJ, Phelan VV, et al. . Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37. 10.1038/nbt.3597. PubMed DOI PMC
Fischer T, Riedl R. Paracelsus’ legacy in the faunal realm: drugs deriving from animal toxins. Drug Discov Today. 2022;27:567–75. 10.1016/j.drudis.2021.10.003. PubMed DOI
Crnković A, Srnko M, Anderluh G. Biological nanopores: engineering on demand. Life. 2021;11:27. 10.3390/life11010027. PubMed DOI PMC
Tyagi A, Tuknait A, Anand P, et al. . CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res. 2015;43:D837–43. 10.1093/nar/gku892. PubMed DOI PMC
di Micco P, Antolin AA, Mitsopoulos C, et al. . canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2023;51:D1212–19. 10.1093/nar/gkac1004. PubMed DOI PMC
Faraji N, Arab SS, Doustmohammadi A, et al. . ApInAPDB: a database of apoptosis-inducing anticancer peptides. Sci Rep. 2022;12:21341. 10.1038/s41598-022-25530-6. PubMed DOI PMC
Cadow J, Born J, Manica M, et al. . PaccMann: a web service for interpretable anticancer compound sensitivity prediction. Nucleic Acids Res. 2020;48:W502–8. 10.1093/nar/gkaa327. PubMed DOI PMC
Petrov I, Alexeyenko A. EviCor: interactive web platform for exploration of molecular features and response to anti-cancer drugs. J Mol Biol. 2022;434:167528.10.1016/j.jmb.2022.167528. PubMed DOI
Romano JD, Tatonetti NP. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies. Sci Data. 2015;2:150065. 10.1038/sdata.2015.65. PubMed DOI PMC
SIB Swiss Institute of Bioinformatics RDF Group Members . The SIB Swiss Institute of Bioinformatics Semantic Web of data. Nucleic Acids Res. 2023;52:D44–51. 10.1093/nar/gkad902. PubMed DOI PMC
Sima AC, Mendes de Farias T, Zbinden E, et al. . Enabling semantic queries across federated bioinformatics databases. Database. 2019;2019:baz106.10.1093/database/baz106. PubMed DOI PMC
Galgonek J, Vondrášek J. IDSM ChemWebRDF: sPARQLing small-molecule datasets. J Cheminform. 2021;13:38.10.1186/s13321-021-00515-1. PubMed DOI PMC
Groza T, Gomez FL, Mashhadi HH, et al. . The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 2023;51:D1038–45. 10.1093/nar/gkac972. PubMed DOI PMC
Howe DG, Bradford YM, Eagle A, et al. . The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching. Nucleic Acids Res. 2017;45:D758–68. 10.1093/nar/gkw1116. PubMed DOI PMC
Gramates LS, Agapite J, Attrill H, et al. . FlyBase: a guided tour of highlighted features. Genetics. 2022;220:iyac035.10.1093/genetics/iyac035. PubMed DOI PMC
Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–77. 10.1093/nar/gkr366. PubMed DOI PMC
Romero-Molina S, Ruiz-Blanco YB, Mieres-Perez J, et al. . PPI-affinity: a web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity. J Proteome Res. 2022;21:1829–41. 10.1021/acs.jproteome.2c00020. PubMed DOI PMC
Lei Y, Li S, Liu Z, et al. . A deep-learning framework for multi-level peptide–protein interaction prediction. Nat Commun. 2021;12:5465. 10.1038/s41467-021-25772-4. PubMed DOI PMC
Vidal-Limon A, Aguilar-Toalá JE, Liceaga AM. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J Agric Food Chem. 2022;70:934–43. 10.1021/acs.jafc.1c06110. PubMed DOI
Almeida JR, Palacios ALV, Patiño RSP, et al. . Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res. 2019;80:68–85. 10.1002/ddr.21456. PubMed DOI
Clark GC, Casewell NR, Elliott CT, et al. . Friends or foes? Emerging impacts of biological toxins. Trends Biochem Sci. 2019;44:365–79. 10.1016/j.tibs.2018.12.004. PubMed DOI
Holmes DE. The data explosion. In: Holmes DE, ed. Big Data: A Very Short Introduction. Oxford, UK: Oxford University Press; 2017. 10.1093/actrade/9780198779575.003.0001. DOI
Di Muri C, Pulieri M, Raho D, et al. . Assessing semantic interoperability in environmental 1 sciences: variety of approaches and semantic artefacts. Scientific Data. 2024; 10.1038/s41597-024-03669-3 DOI
Ong E, Xiang Z, Zhao B, et al. . Ontobee: a linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Res. 2017;45:D347–52. 10.1093/nar/gkw918. PubMed DOI PMC
Emam M, Tarek A, Soudy M, et al. . Comparative evaluation of multiomics integration tools for the study of prediabetes: insights into the earliest stages of type 2 diabetes mellitus. Netw Model Anal Health Inform Bioinforma. 2024;13:8. 10.1007/s13721-024-00442-9. DOI
Wilkinson MD, Dumontier M, IjJ A, et al. . The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. 10.1038/sdata.2016.18. PubMed DOI PMC
Whetzel PL, Noy NF, Shah NH, et al. . BioPortal: enhanced functionality via new web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res. 2011;39:W541–45. 10.1093/nar/gkr469. PubMed DOI PMC
European Commission . Directorate-General for Research and Innovation. Turning FAIR into reality—final report and action plan from the European Commission expert group on FAIR data. Brussels: Publications Office; 2018. 10.2777/54599. DOI