Web of venom: exploration of big data resources in animal toxin research

. 2024 Jan 02 ; 13 () : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39250076

Grantová podpora
European Cooperation in Science and Technology
Fundação para a Ciência e a Tecnologia

Research on animal venoms and their components spans multiple disciplines, including biology, biochemistry, bioinformatics, pharmacology, medicine, and more. Manipulating and analyzing the diverse array of data required for venom research can be challenging, and relevant tools and resources are often dispersed across different online platforms, making them less accessible to nonexperts. In this article, we address the multifaceted needs of the scientific community involved in venom and toxin-related research by identifying and discussing web resources, databases, and tools commonly used in this field. We have compiled these resources into a comprehensive table available on the VenomZone website (https://venomzone.expasy.org/10897). Furthermore, we highlight the challenges currently faced by researchers in accessing and using these resources and emphasize the importance of community-driven interdisciplinary approaches. We conclude by underscoring the significance of enhancing standards, promoting interoperability, and encouraging data and method sharing within the venom research community.

CIIMAR CIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto 4450 208 Porto Portugal

Department of Agricultural Sciences University Federico 2 of Naples 80055 Portici Naples Italy

Department of Biology and Evolution of Marine Organisms Stazione Zoologica Anton Dohrn 00198 Rome Italy

Department of Biology Faculty of Science Eskisehir Osmangazi University 26040 Eskişehir Turkey

Department of Biology Faculty of Sciences University of Porto 4169 007 Porto Portugal

Department of Clinical Pharmacology and Therapeutics Faculty of Medicine and Surgery University of Malta 2090 Msida Malta

Department of Ecology and Evolution University of Lausanne 1015 Lausanne Switzerland

Department of Ecology Evolution and Behavior Alexander Silberman Institute of Life Sciences Faculty of Science The Hebrew University of Jerusalem 9190401 Jerusalem Israel

Department of Health Sciences School of Life and Health Sciences University of Nicosia 1700 Nicosia Cyprus

Department of Medical Sciences iBiMED University of Aveiro 3810 193 Aveiro Portugal

Department of Molecular Biology and Nanobiotechnology National Institute of Chemistry 1000 Ljubljana Slovenia

Department of Research Infrastructures for Marine Biological Resources Stazione Zoologica Anton Dohrn Villa Comunale 80121 Naples Italy

Engineering Faculty Bioengineering Department Ege University 35100 Bornova Izmir Turkey

Goethe University Frankfurt Faculty of Biological Sciences 60438 Frankfurt Germany

Institute of Research on Terrestrial Ecosystems 73100 Lecce Italy

Laboratory Architecture et Fonction des Macromolécules Biologiques Aix Marseille University Centre National de la Recherche Scientifique Faculté des Sciences Campus Luminy 13288 Marseille France

Laboratory of Transgenic Models of Diseases Institute of Molecular Genetics of the Czech Academy of Sciences 252 50 Vestec Czech Republic

LOEWE Centre for Translational Biodiversity Genomics 60325 Frankfurt Germany

Madrid Institute of Advanced Studies in Food Precision Nutrition and Aging Program 28049 Madrid Spain

Malta National Poisons Centre Malta Life Sciences Park 3000 San Ġwann Malta

Neuroscience Institute National Research Council 35131 Padua Italy

SIB Swiss Institute of Bioinformatics 1015 Lausanne Switzerland

SIB Swiss Institute of Bioinformatics Swiss Prot Group 1211 Geneva Switzerland

Veterinary Center for Resistance Research Freie Universität Berlin 14163 Berlin Germany

Zobrazit více v PubMed

Schendel V, Rash LD, Jenner RA, et al. . The diversity of venom: the importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins. 2019;11:666. 10.3390/toxins11110666. PubMed DOI PMC

Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov. 2003;2:790–802. 10.1038/nrd1197. PubMed DOI

Holford M, Daly M, King GF, et al. . Venoms to the rescue. Science. 2018;361:842–44. 10.1126/science.aau7761. PubMed DOI

Herzig V, Cristofori-Armstrong B, Israel MR, et al. . Animal toxins—nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol. 2020;181:114096.10.1016/j.bcp.2020.114096. PubMed DOI PMC

Waheed H, Moin SF, Choudhary MI. Snake venom: from deadly toxins to life-saving therapeutics. Curr Med Chem. 2017;24:1874–91. 10.2174/0929867324666170605091546. PubMed DOI

Talukdar A, Maddhesiya P, Namsa ND, et al. . Snake venom toxins targeting the central nervous system. Toxin Rev. 2023;42:382–406. 10.1080/15569543.2022.2084418. DOI

Oliveira AL, Viegas MF, da Silva SL, et al. . The chemistry of snake venom and its medicinal potential. Nat Rev Chem. 2022;6:451–69. 10.1038/s41570-022-00393-7. PubMed DOI PMC

Marsh NA. Diagnostic uses of snake venom. Pathophysiol Haemos Thromb. 2001;31:211–17. 10.1159/000048065. PubMed DOI

Estevão-Costa M-I, Sanz-Soler R, Johanningmeier B, et al. . Snake venom components in medicine: from the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem Cell Biol. 2018;104:94–113. 10.1016/j.biocel.2018.09.011. PubMed DOI

Windley MJ, Herzig V, Dziemborowicz SA, et al. . Spider-venom peptides as bioinsecticides. Toxins. 2012;4:191–227. 10.3390/toxins4030191. PubMed DOI PMC

King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol. 2013;58:475–96. 10.1146/annurev-ento-120811-153650. PubMed DOI

Modahl CM, Brahma RK, Koh CY, et al. . Omics technologies for profiling toxin diversity and evolution in snake venom: impacts on the discovery of therapeutic and diagnostic agents. Annu Rev Anim Biosci. 2020;8:91–116. 10.1146/annurev-animal-021419-083626. PubMed DOI

Dutertre S, Lewis RJ. Use of venom peptides to probe ion channel structure and function. J Biol Chem. 2010;285:13315–20. 10.1074/jbc.R109.076596. PubMed DOI PMC

von Reumont BM, Anderluh G, Antunes A, et al. . Modern venomics—current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience. 2022;11:giac048. 10.1093/gigascience/giac048. PubMed DOI PMC

VenomZone Web Resources . https://venomzone.expasy.org/10897. Accessed 9 July 2024.

Modica MV, Ahmad R, Ainsworth S, et al. . The new COST Action European Venom Network (EUVEN)—synergy and future perspectives of modern venomics. Gigascience. 2021;10:giab019.10.1093/gigascience/giab019. PubMed DOI PMC

Perez-Riverol Y, Bai J, Bandla C, et al. . The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–52. 10.1093/nar/gkab1038. PubMed DOI PMC

Pineda SS, Chaumeil P-A, Kunert A, et al. . ArachnoServer 3.0: an online resource for automated discovery, analysis and annotation of spider toxins. Bioinformatics. 2018;34:1074–76. 10.1093/bioinformatics/btx661. PubMed DOI

Kaas Q, Yu R, Jin A-H, et al. . ConoServer: updated content, knowledge, and discovery tools in the conopeptide database. Nucleic Acids Res. 2012;40:D325–30. 10.1093/nar/gkr886. PubMed DOI PMC

Jungo F, Bougueleret L, Xenarios I, et al. . The UniProtKB/Swiss-Prot Tox-Prot program: a central hub of integrated venom protein data. Toxicon. 2012;60:551–57. 10.1016/j.toxicon.2012.03.010. PubMed DOI PMC

Duvaud S, Gabella C, Lisacek F, et al. . Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021;49:W216–27. 10.1093/nar/gkab225. PubMed DOI PMC

wwPDB Consortium . Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 2019;47:D520–28. 10.1093/nar/gky949. PubMed DOI PMC

Romero PR, Kobayashi N, Wedell JR, et al. . BioMagResBank (BMRB) as a resource for structural biology. In: Gáspári Z, ed. Structural Bioinformatics: Methods and Protocols. New York: Springer US; 2020:187–218. 10.1007/978-1-0716-0270-6_14. PubMed DOI PMC

The wwPDB Consortium . EMDB—The Electron Microscopy Data Bank. Nucleic Acids Res. 2024;52:D456–65. 10.1093/nar/gkad1019. PubMed DOI PMC

Haji-Ghassemi O, Chen YS, Woll K, et al. . Cryo-EM analysis of scorpion toxin binding to ryanodine receptors reveals subconductance that is abolished by PKA phosphorylation. Sci Adv. 2023;9:eadf4936. 10.1126/sciadv.adf4936. PubMed DOI PMC

Nys M, Zarkadas E, Brams M, et al. . The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat Commun. 2022;13:4543. 10.1038/s41467-022-32174-7. PubMed DOI PMC

Varadi M, Anyango S, Deshpande M, et al. . AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–44. 10.1093/nar/gkab1061. PubMed DOI PMC

Jumper J, Evans R, Pritzel A, et al. . Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–89. 10.1038/s41586-021-03819-2. PubMed DOI PMC

Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28:27–30. 10.1093/nar/28.1.27. PubMed DOI PMC

Ashburner M, Ball CA, Blake JA, et al. . Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25–29. 10.1038/75556. PubMed DOI PMC

Kim S, Chen J, Cheng T, et al. . PubChem 2023 update. Nucleic Acids Res. 2023;51:D1373–80. 10.1093/nar/gkac956. PubMed DOI PMC

Krylov NA, Tabakmakher VM, Yureva DA, et al. . Kalium 3.0 is a comprehensive depository of natural, artificial, and labeled polypeptides acting on potassium channels. Protein Sci. 2023;32:e4776. 10.1002/pro.4776. PubMed DOI PMC

Postic G, Gracy J, Périn C, et al. . KNOTTIN: the database of inhibitor cystine knot scaffold after 10 years, toward a systematic structure modeling. Nucleic Acids Res. 2018;46:D454–58. 10.1093/nar/gkx1084. PubMed DOI PMC

Liu J, Maxwell M, Cuddihy T, et al. . ScrepYard: an online resource for disulfide-stabilized tandem repeat peptides. Protein Sci. 2023;32:e4566. 10.1002/pro.4566. PubMed DOI PMC

Jungo F, Estreicher A, Bairoch A, et al. . Animal toxins: how is complexity represented in databases?. Toxins. 2010;2:262–82. 10.3390/toxins2020261. PubMed DOI PMC

Tan PTJ, Veeramani A, Srinivasan KN, et al. . SCORPION2: a database for structure-function analysis of scorpion toxins. Toxicon. 2006;47:356–63. 10.1016/j.toxicon.2005.12.001. PubMed DOI

He Q-Y, He Q-Z, Deng X-C, et al. . ATDB: a uni-database platform for animal toxins. Nucleic Acids Res. 2008;36:D293–97. 10.1093/nar/gkm832. PubMed DOI PMC

Forster YM, Reusser S, Forster F, et al. . VenoMS—a website for the low molecular mass compounds in spider venoms. Metabolites. 2020;10:327. 10.3390/metabo10080327. PubMed DOI PMC

Wishart D, Arndt D, Pon A, et al. . T3DB: the toxic exposome database. Nucleic Acids Res. 2015;43:D928–34. 10.1093/nar/gku1004. PubMed DOI PMC

VenomZone . https://venomzone.expasy.org/. Accessed 9 July 2024.

The Galaxy Community . The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022;50:W345–51. 10.1093/nar/gkac247. PubMed DOI PMC

Perry BW, Gopalan SS, Pasquesi GIM, et al. . Snake venom gene expression is coordinated by novel regulatory architecture and the integration of multiple co-opted vertebrate pathways. Genome Res. 2022;32:1058–73. 10.1101/gr.276251.121. PubMed DOI PMC

Dowell NL, Giorgianni MW, Kassner VA, et al. . The deep origin and recent loss of venom toxin genes in rattlesnakes. Curr Biol. 2016;26:2434–45. 10.1016/j.cub.2016.07.038. PubMed DOI PMC

Vonk FJ, Casewell NR, Henkel CV, et al. . The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci USA. 2013;110:20651–56. 10.1073/pnas.1314702110. PubMed DOI PMC

Schield DR, Card DC, Hales NR, et al. . The origins and evolution of chromosomes, dosage compensation, and mechanisms underlying venom regulation in snakes. Genome Res. 2019;29:590–601. 10.1101/gr.240952.118. PubMed DOI PMC

Drukewitz SH, von Reumont BM. The significance of comparative genomics in modern evolutionary venomics. Front Ecol Evol. 2019;7:163. https://www.frontiersin.org/articles/10.3389/fevo.2019.00163. DOI

Grabherr MG, Haas BJ, Yassour M, et al. . Trinity: Reconstructing a full-length transcriptome without a genome from RNA-seq data. Nat Biotechnol. 2011;29:644–52. 10.1038/nbt.1883. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–59. 10.1038/nmeth.1923. PubMed DOI PMC

Kim D, Paggi JM, Park C, et al. . Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. 10.1038/s41587-019-0201-4. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, et al. . STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC

Kim D, Pertea G, Trapnell C, et al. . TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. 10.1186/gb-2013-14-4-r36. PubMed DOI PMC

Musich R, Cadle-Davidson L, Osier MV. Comparison of short-read sequence aligners indicates strengths and weaknesses for biologists to consider. Front Plant Sci. 2021;12:657240. 10.3389/fpls.2021.657240. PubMed DOI PMC

Amarasinghe SL, Su S, Dong X, et al. . Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30. 10.1186/s13059-020-1935-5. PubMed DOI PMC

Wang Y, Zhao Y, Bollas A, et al. . Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol. 2021;39:1348–65. 10.1038/s41587-021-01108-x. PubMed DOI PMC

Larivière D, Abueg L, Brajuka N, et al. . Scalable, accessible and reproducible reference genome assembly and evaluation in Galaxy. Nat Biotechnol. 2024;42:367–70. 10.1038/s41587-023-02100-3. PubMed DOI

Cunningham F, Allen JE, Allen J, et al. . Ensembl 2022. Nucleic Acids Res. 2022;50:D988–95. 10.1093/nar/gkab1049. PubMed DOI PMC

Rhie A, McCarthy SA, Fedrigo O, et al. . Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592:737–46. 10.1038/s41586-021-03451-0. PubMed DOI PMC

Koepfli K-P, Paten B, Genome 10 K Community of Scientists , et al. The Genome 10 K Project: a way forward. Annu Rev Anim Biosci. 2015;3:57–111. 10.1146/annurev-animal-090414-014900. PubMed DOI PMC

Voolstra CR, Woerheide G, Lopez JV, et al. . Advancing genomics through the Global Invertebrate Genomics Alliance (GIGA). Invert Systematics. 2017;31:1–7. 10.1071/IS16059. PubMed DOI PMC

Lewin HA, Robinson GE, Kress WJ, et al. . Earth BioGenome Project: sequencing life for the future of life. Proc Natl Acad Sci USA. 2018;115:4325–33. 10.1073/pnas.1720115115. PubMed DOI PMC

Formenti G, Theissinger K, Fernandes C, et al. . The era of reference genomes in conservation genomics. Trends Ecol Evol. 2022;37:197–202. 10.1016/j.tree.2021.11.008. PubMed DOI

The Darwin Tree of Life Project Consortium . Sequence locally, think globally: the Darwin Tree of Life Project. Proc Natl Acad Sci USA. 2022;119:e2115642118.10.1073/pnas.2115642118. PubMed DOI PMC

Zhang G, Li C, Li Q, et al. . Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346:1311–20. 10.1126/science.1251385. PubMed DOI PMC

Zimmermann B, Montenegro JD, Robb SMC, et al. . Topological structures and syntenic conservation in sea anemone genomes. Nat Commun. 2023;14:8270. 10.1038/s41467-023-44080-7. PubMed DOI PMC

Kon-Nanjo K, Kon T, Horkan HR, et al. . Chromosome-level genome assembly of hydractinia symbiolongicarpus. G3 (Bethesda). 2023;13:jkad107.10.1093/g3journal/jkad107. PubMed DOI PMC

Chapman JA, Kirkness EF, Simakov O, et al. . The dynamic genome of Hydra. Nature. 2010;464:592–96. 10.1038/nature08830. PubMed DOI PMC

Putnam NH, Srivastava M, Hellsten U, et al. . Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317:86–94. 10.1126/science.1139158. PubMed DOI

Shinzato C, Shoguchi E, Kawashima T, et al. . Using the Acropora digitifera genome to understand coral responses to environmental change. Nature. 2011;476:320–23. 10.1038/nature10249. PubMed DOI

Baumgarten S, Simakov O, Esherick LY, et al. . The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci USA. 2015;112:11893–98. 10.1073/pnas.1513318112. PubMed DOI PMC

Bhattacharya D, Agrawal S, Aranda M, et al. . Comparative genomics explains the evolutionary success of reef-forming corals. eLife. 2016;5:e13288.10.7554/eLife.13288. PubMed DOI PMC

Grimson A, Srivastava M, Fahey B, et al. . Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 2008;455:1193–97. 10.1038/nature07415. PubMed DOI PMC

Moran Y, Fredman D, Praher D, et al. . Cnidarian microRNAs frequently regulate targets by cleavage. Genome Res. 2014;24:651–63. 10.1101/gr.162503.113. PubMed DOI PMC

Schwaiger M, Schönauer A, Rendeiro AF, et al. . Evolutionary conservation of the eumetazoan gene regulatory landscape. Genome Res. 2014;24:639–50. 10.1101/gr.162529.113. PubMed DOI PMC

Cazet JF, Siebert S, Little HM, et al. . A chromosome-scale epigenetic map of the Hydra genome reveals conserved regulators of cell state. Genome Res. 2023;33:283–98. 10.1101/gr.277040.122. PubMed DOI PMC

Jackson TNW, Koludarov I. How the toxin got its toxicity. Front Pharmacol. 2020;11:574925.10.3389/fphar.2020.574925. PubMed DOI PMC

Koludarov I, Velasque M, Senoner T, et al. . Prevalent bee venom genes evolved before the aculeate stinger and eusociality. BMC Biol. 2023;21:229. 10.1186/s12915-023-01656-5. PubMed DOI PMC

Koludarov I, Senoner T, Jackson TNW, et al. . Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily. Nat Commun. 2023;14:4861.10.1038/s41467-023-40550-0. PubMed DOI PMC

Fuentes D, Molina M, Chorostecki U, et al. . PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies. Nucleic Acids Res. 2022;50:D1062–68. 10.1093/nar/gkab966. PubMed DOI PMC

Nachtigall PG, Durham AM, Rokyta DR, et al. . ToxCodAn-genome: an automated pipeline for toxin-gene annotation in genome assembly of venomous lineages. Gigascience. 2024;13:giad116.10.1093/gigascience/giad116. PubMed DOI PMC

Hogan MP, Holding ML, Nystrom GS, et al. . The genetic regulatory architecture and epigenomic basis for age-related changes in rattlesnake venom. Proc Natl Acad Sci USA. 2024;121:e2313440121. 10.1073/pnas.2313440121. PubMed DOI PMC

Li D, Purushotham D, Harrison JK, et al. . WashU Epigenome Browser update 2022. Nucleic Acids Res. 2022;50:W774–81. 10.1093/nar/gkac238. PubMed DOI PMC

Bryant DM, Johnson K, DiTommaso T, et al. . A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 2017;18:762–76. 10.1016/j.celrep.2016.12.063. PubMed DOI PMC

MacManes MD. The Oyster River Protocol: a multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ. 2018;6:e5428. 10.7717/peerj.5428. PubMed DOI PMC

Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–W37. 10.1093/nar/gkr367. PubMed DOI PMC

Blum M, Chang H-Y, Chuguransky S, et al. . The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021;49:D344–54. 10.1093/nar/gkaa977. PubMed DOI PMC

Mistry J, Chuguransky S, Williams L, et al. . Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–19. 10.1093/nar/gkaa913. PubMed DOI PMC

Wang J, Chitsaz F, Derbyshire MK, et al. . The conserved domain database in 2023. Nucleic Acids Res. 2023;51:D384–88. 10.1093/nar/gkac1096. PubMed DOI PMC

Agüero-Chapin G, Domínguez-Pérez D, Marrero-Ponce Y, et al. . Unveiling encrypted antimicrobial peptides from cephalopods’ salivary glands: a proteolysis-driven virtual approach. ACS Omega. 2024. 10.1021/acsomega.4c01959. DOI

Macrander J, Panda J, Janies D, et al. . Venomix: a simple bioinformatic pipeline for identifying and characterizing toxin gene candidates from transcriptomic data. PeerJ. 2018;6:e5361.10.7717/peerj.5361. PubMed DOI PMC

Gacesa R, Barlow DJ, Long PF. Machine learning can differentiate venom toxins from other proteins having non-toxic physiological functions. Peer J Comput Sci. 2016;2:e90. 10.7717/peerj-cs.90. DOI

Cole TJ, Brewer MS. TOXIFY: a deep learning approach to classify animal venom proteins. PeerJ. 2019;7:e7200.10.7717/peerj.7200. PubMed DOI PMC

Ringeval A, Farhat S, Fedosov A, et al. . DeTox: a pipeline for the detection of toxins in venomous organisms. Briefings Bioinf. 2024;25:bbae094. 10.1093/bib/bbae094. PubMed DOI PMC

Pan X, Zuallaert J, Wang X, et al. . ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinformatics. 2021;36:5159–68. 10.1093/bioinformatics/btaa656. PubMed DOI

Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 2018;46:W84–88. 10.1093/nar/gky350. PubMed DOI PMC

Zancolli G, Reijnders M, Waterhouse RM, et al. . Convergent evolution of venom gland transcriptomes across Metazoa. Proc Natl Acad Sci USA. 2022;119:e2111392119.10.1073/pnas.2111392119. PubMed DOI PMC

Perry BW, Schield DR, Westfall AK, et al. . Physiological demands and signaling associated with snake venom production and storage illustrated by transcriptional analyses of venom glands. Sci Rep. 2020;10:18083. 10.1038/s41598-020-75048-y. PubMed DOI PMC

Haney RA, Ayoub NA, Clarke TH, et al. . Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics. 2014;15:366.10.1186/1471-2164-15-366. PubMed DOI PMC

Bray NL, Pimentel H, Melsted P, et al. . Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–27. 10.1038/nbt.3519. PubMed DOI

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. 10.1093/bioinformatics/btp616. PubMed DOI PMC

Tan CH, Tan KY, Tan NH. De novo assembly of venom gland transcriptome of Tropidolaemus wagleri (Temple pit viper, Malaysia) and insights into the origin of its major toxin, waglerin. Toxins. 2023;15:585.10.3390/toxins15090585. PubMed DOI PMC

So WL, Leung TCN, Nong W, et al. . Transcriptomic and proteomic analyses of venom glands from scorpions Liocheles australasiae, Mesobuthus martensii, and Scorpio maurus palmatus. Peptides. 2021;146:170643. 10.1016/j.peptides.2021.170643. PubMed DOI

Menk JJ, Matuhara YE, Sebestyen-França H, et al. . Antimicrobial peptide arsenal predicted from the venom gland transcriptome of the tropical trap-jaw ant Odontomachus chelifer. Toxins. 2023;15:345.10.3390/toxins15050345. PubMed DOI PMC

Xie B, Yu H, Kerkkamp H, et al. . Comparative transcriptome analyses of venom glands from three scorpionfishes. Genomics. 2019;111:231–41. 10.1016/j.ygeno.2018.11.012. PubMed DOI

Ramírez DS, Alzate JF, Simone Y, et al. . Intersexual differences in the gene expression of Phoneutria depilata (Araneae, Ctenidae) toxins revealed by venom gland transcriptome analyses. Toxins. 2023;15:429. 10.3390/toxins15070429. PubMed DOI PMC

Chen C, Hou J, Tanner JJ, et al. . Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci. 2020;21:2873.10.3390/ijms21082873. PubMed DOI PMC

Perkins DN, Pappin DJC, Creasy DM, et al. . Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67. 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2. PubMed DOI

Zhang J, Xin L, Shan B, et al. . PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics. 2012;11:M111.010587. 10.1074/mcp.M111.010587. PubMed DOI PMC

Orsburn BC. Proteome discoverer—a community enhanced data processing suite for protein informatics. Proteomes. 2021;9:15.10.3390/proteomes9010015. PubMed DOI PMC

Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–89. 10.1016/1044-0305(94)80016-2. PubMed DOI

Bern M, Kil YJ, Byonic BC. Advanced peptide and protein identification software. Curr Protoc Bioinformatics. 2012;40:13.20.1–13.20.14. 10.1002/0471250953.bi1320s40. PubMed DOI PMC

Chi H, Liu C, Yang H, et al. . Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol. 2018;36:1059–61. 10.1038/nbt.4236. PubMed DOI

Kong AT, Leprevost FV, Avtonomov DM, et al. . MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat Methods. 2017;14:513–20. 10.1038/nmeth.4256. PubMed DOI PMC

Vaudel M, Burkhart JM, Zahedi RP, et al. . PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol. 2015;33:22–24. 10.1038/nbt.3109. PubMed DOI

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72. 10.1038/nbt.1511. PubMed DOI

MacLean B, Tomazela DM, Shulman N, et al. . Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–68. 10.1093/bioinformatics/btq054. PubMed DOI PMC

Demichev V, Messner CB, Vernardis SI, et al. . DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–44. 10.1038/s41592-019-0638-x. PubMed DOI PMC

Sinitcyn P, Hamzeiy H, Salinas Soto F, et al. . MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat Biotechnol. 2021;39:1563–73. 10.1038/s41587-021-00968-7. PubMed DOI PMC

Doerr A. DIA mass spectrometry. Nat Methods. 2015;12:35.10.1038/nmeth.3234. DOI

Ma B. Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom. 2015;26:1885–94. 10.1007/s13361-015-1204-0. PubMed DOI PMC

Yang H, Chi H, Zeng W-F, et al. . pNovo 3: precise de novo peptide sequencing using a learning-to-rank framework. Bioinformatics. 2019;35:i183–90. 10.1093/bioinformatics/btz366. PubMed DOI PMC

Melani RD, Nogueira FCS, Domont GB. It is time for top-down venomics. J Venom Anim Toxins Incl Trop Dis. 2017;23:44.10.1186/s40409-017-0135-6. PubMed DOI PMC

Röst HL, Sachsenberg T, Aiche S, et al. . OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–48. 10.1038/nmeth.3959. PubMed DOI

Schmid R, Heuckeroth S, Korf A, et al. . Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol. 2023;41:447–49. 10.1038/s41587-023-01690-2. PubMed DOI PMC

Liu X, Inbar Y, Dorrestein PC, et al. . Deconvolution and database search of complex tandem mass spectra of intact proteins. Mol Cell Proteomics. 2010;9:2772–82. 10.1074/mcp.M110.002766. PubMed DOI PMC

Adusumilli R, Mallick P. Data conversion with ProteoWizard msConvert. In: Comai L, Katz JE, Mallick P, eds. Proteomics: Methods and Protocols. New York: Springer US; 2017:339–68. 10.1007/978-1-4939-6747-6_23. PubMed DOI

Liu X, Sirotkin Y, Shen Y, et al. . Protein identification using top-down spectra. Mol Cell Proteomics. 2012;11:M111.008524. 10.1074/mcp.M111.008524. PubMed DOI PMC

Guner H, Close PL, Cai W, et al. . MASH Suite: a user-friendly and versatile software interface for high-resolution mass spectrometry data interpretation and visualization. J Am Soc Mass Spectrom. 2014;25:464–70. 10.1007/s13361-013-0789-4. PubMed DOI PMC

Sun R-X, Luo L, Wu L, et al. . pTop 1.0: a high-accuracy and high-efficiency search engine for intact protein identification. Anal Chem. 2016;88:3082–90. 10.1021/acs.analchem.5b03963. PubMed DOI

Kou Q, Wu S, Tolić N, et al. . A mass graph-based approach for the identification of modified proteoforms using top-down tandem mass spectra. Bioinformatics. 2017;33:1309–16. 10.1093/bioinformatics/btw806. PubMed DOI PMC

Kou Q, Xun L, Liu X. TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics. 2016;32:3495–97. 10.1093/bioinformatics/btw398. PubMed DOI PMC

Park J, Piehowski PD, Wilkins C, et al. . Informed-Proteomics: open-source software package for top-down proteomics. Nat Methods. 2017;14:909–14. 10.1038/nmeth.4388. PubMed DOI PMC

Gupta S, Kapoor P, Chaudhary K, et al. . In silico approach for predicting toxicity of peptides and proteins. PLoS One. 2013;8:e73957.10.1371/journal.pone.0073957. PubMed DOI PMC

Sharma N, Naorem LD, Jain S, et al. . ToxinPred2: an improved method for predicting toxicity of proteins. Brief Bioinform. 2022;23:bbac174. 10.1093/bib/bbac174. PubMed DOI

Mooney C, Haslam NJ, Pollastri G, et al. . Towards the improved discovery and design of functional peptides: common features of diverse classes permit generalized prediction of bioactivity. PLoS One. 2012;7:e45012.10.1371/journal.pone.0045012. PubMed DOI PMC

Lamiable A, Thévenet P, Rey J, et al. . PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016;44:W449–54. 10.1093/nar/gkw329. PubMed DOI PMC

Rey J, Murail S, de Vries S, et al. . PEP-FOLD4: a pH-dependent force field for peptide structure prediction in aqueous solution. Nucleic Acids Res. 2023;51:W432–37. 10.1093/nar/gkad376. PubMed DOI PMC

Mirdita M, Schütze K, Moriwaki Y, et al. . ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82. 10.1038/s41592-022-01488-1. PubMed DOI PMC

Baek M, DiMaio F, Anishchenko I, et al. . Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–76. 10.1126/science.abj8754. PubMed DOI PMC

Källberg M, Wang H, Wang S, et al. . Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7:1511–22. 10.1038/nprot.2012.085. PubMed DOI PMC

Choi M, Carver J, Chiva C, et al. . MassIVE.quant: a community resource of quantitative mass spectrometry-based proteomics datasets. Nat Methods. 2020;17:981–84. 10.1038/s41592-020-0955-0. PubMed DOI PMC

Wishart DS, Tzur D, Knox C, et al. . HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–26. 10.1093/nar/gkl923. PubMed DOI PMC

Alonso LL, Slagboom J, Casewell NR, et al. . Metabolome-based classification of snake venoms by bioinformatic tools. Toxins. 2023;15:161.10.3390/toxins15020161. PubMed DOI PMC

Wang M, Carver JJ, Phelan VV, et al. . Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37. 10.1038/nbt.3597. PubMed DOI PMC

Fischer T, Riedl R. Paracelsus’ legacy in the faunal realm: drugs deriving from animal toxins. Drug Discov Today. 2022;27:567–75. 10.1016/j.drudis.2021.10.003. PubMed DOI

Crnković A, Srnko M, Anderluh G. Biological nanopores: engineering on demand. Life. 2021;11:27. 10.3390/life11010027. PubMed DOI PMC

Tyagi A, Tuknait A, Anand P, et al. . CancerPPD: a database of anticancer peptides and proteins. Nucleic Acids Res. 2015;43:D837–43. 10.1093/nar/gku892. PubMed DOI PMC

di Micco P, Antolin AA, Mitsopoulos C, et al. . canSAR: update to the cancer translational research and drug discovery knowledgebase. Nucleic Acids Res. 2023;51:D1212–19. 10.1093/nar/gkac1004. PubMed DOI PMC

Faraji N, Arab SS, Doustmohammadi A, et al. . ApInAPDB: a database of apoptosis-inducing anticancer peptides. Sci Rep. 2022;12:21341. 10.1038/s41598-022-25530-6. PubMed DOI PMC

Cadow J, Born J, Manica M, et al. . PaccMann: a web service for interpretable anticancer compound sensitivity prediction. Nucleic Acids Res. 2020;48:W502–8. 10.1093/nar/gkaa327. PubMed DOI PMC

Petrov I, Alexeyenko A. EviCor: interactive web platform for exploration of molecular features and response to anti-cancer drugs. J Mol Biol. 2022;434:167528.10.1016/j.jmb.2022.167528. PubMed DOI

Romano JD, Tatonetti NP. VenomKB, a new knowledge base for facilitating the validation of putative venom therapies. Sci Data. 2015;2:150065. 10.1038/sdata.2015.65. PubMed DOI PMC

SIB Swiss Institute of Bioinformatics RDF Group Members . The SIB Swiss Institute of Bioinformatics Semantic Web of data. Nucleic Acids Res. 2023;52:D44–51. 10.1093/nar/gkad902. PubMed DOI PMC

Sima AC, Mendes de Farias T, Zbinden E, et al. . Enabling semantic queries across federated bioinformatics databases. Database. 2019;2019:baz106.10.1093/database/baz106. PubMed DOI PMC

Galgonek J, Vondrášek J. IDSM ChemWebRDF: sPARQLing small-molecule datasets. J Cheminform. 2021;13:38.10.1186/s13321-021-00515-1. PubMed DOI PMC

Groza T, Gomez FL, Mashhadi HH, et al. . The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 2023;51:D1038–45. 10.1093/nar/gkac972. PubMed DOI PMC

Howe DG, Bradford YM, Eagle A, et al. . The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching. Nucleic Acids Res. 2017;45:D758–68. 10.1093/nar/gkw1116. PubMed DOI PMC

Gramates LS, Agapite J, Attrill H, et al. . FlyBase: a guided tour of highlighted features. Genetics. 2022;220:iyac035.10.1093/genetics/iyac035. PubMed DOI PMC

Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–77. 10.1093/nar/gkr366. PubMed DOI PMC

Romero-Molina S, Ruiz-Blanco YB, Mieres-Perez J, et al. . PPI-affinity: a web tool for the prediction and optimization of protein–peptide and protein–protein binding affinity. J Proteome Res. 2022;21:1829–41. 10.1021/acs.jproteome.2c00020. PubMed DOI PMC

Lei Y, Li S, Liu Z, et al. . A deep-learning framework for multi-level peptide–protein interaction prediction. Nat Commun. 2021;12:5465. 10.1038/s41467-021-25772-4. PubMed DOI PMC

Vidal-Limon A, Aguilar-Toalá JE, Liceaga AM. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J Agric Food Chem. 2022;70:934–43. 10.1021/acs.jafc.1c06110. PubMed DOI

Almeida JR, Palacios ALV, Patiño RSP, et al. . Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res. 2019;80:68–85. 10.1002/ddr.21456. PubMed DOI

Clark GC, Casewell NR, Elliott CT, et al. . Friends or foes? Emerging impacts of biological toxins. Trends Biochem Sci. 2019;44:365–79. 10.1016/j.tibs.2018.12.004. PubMed DOI

Holmes DE. The data explosion. In: Holmes DE, ed. Big Data: A Very Short Introduction. Oxford, UK: Oxford University Press; 2017. 10.1093/actrade/9780198779575.003.0001. DOI

Di Muri C, Pulieri M, Raho D, et al. . Assessing semantic interoperability in environmental 1 sciences: variety of approaches and semantic artefacts. Scientific Data. 2024; 10.1038/s41597-024-03669-3 DOI

Ong E, Xiang Z, Zhao B, et al. . Ontobee: a linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Res. 2017;45:D347–52. 10.1093/nar/gkw918. PubMed DOI PMC

Emam M, Tarek A, Soudy M, et al. . Comparative evaluation of multiomics integration tools for the study of prediabetes: insights into the earliest stages of type 2 diabetes mellitus. Netw Model Anal Health Inform Bioinforma. 2024;13:8. 10.1007/s13721-024-00442-9. DOI

Wilkinson MD, Dumontier M, IjJ A, et al. . The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018. 10.1038/sdata.2016.18. PubMed DOI PMC

Whetzel PL, Noy NF, Shah NH, et al. . BioPortal: enhanced functionality via new web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res. 2011;39:W541–45. 10.1093/nar/gkr469. PubMed DOI PMC

European Commission . Directorate-General for Research and Innovation. Turning FAIR into reality—final report and action plan from the European Commission expert group on FAIR data. Brussels: Publications Office; 2018. 10.2777/54599. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace