Effects of Life-Long Exercise on Age-Related Inflammation, Apoptosis, Oxidative Stress, Ferroptosis Markers, and NRF2/KAEP 1/Klotho Pathway in Rat Kidneys
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
39264079
PubMed Central
PMC11414594
DOI
10.33549/physiolres.935290
PII: 935290
Knihovny.cz E-zdroje
- MeSH
- apoptóza * fyziologie MeSH
- biologické markery metabolismus MeSH
- faktor 2 související s NF-E2 * metabolismus MeSH
- ferroptóza * fyziologie MeSH
- glukuronidasa metabolismus MeSH
- kondiční příprava zvířat * fyziologie MeSH
- krysa rodu Rattus MeSH
- ledviny * metabolismus patologie MeSH
- oxidační stres * fyziologie MeSH
- potkani Sprague-Dawley * MeSH
- proteiny Klotho * MeSH
- signální transdukce fyziologie MeSH
- stárnutí metabolismus patologie MeSH
- zánět metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- faktor 2 související s NF-E2 * MeSH
- glukuronidasa MeSH
- Klotho Protein, rat MeSH Prohlížeč
- Nfe2l2 protein, rat MeSH Prohlížeč
- proteiny Klotho * MeSH
Xi-Kun Yuan Pin-Shi Ni Zhen-Hao Yan Zhi Yu Zhuang-Zhi Wang Chen-Kai Zhang Fang-Hui Li Xiao-Ming Yu 1Sports Department, Nanjing University of Science and Technology ZiJin College, Nanjing, China, 2School of Sport Sciences, Nanjing Normal University, Nanjing, China, 3Shanghai Seventh People's Hospital, Shanghai, China To investigate the effects of life-long exercise (LLE) on age-related inflammatory cytokines, apoptosis, oxidative stress, ferroptosis markers, and the NRF2/KAEP 1/Klotho pathway in rats. Eight-month-old female Sprague-Dawley rats were divided into four groups: 1) LLE: 18-month LLE training starting at 8 months of age, 2) Old moderate-intensity continuous training (OMICT): 8 months of moderate-intensity continuous training starting at 18 months of age, 3) Adult sedentary (ASED): 8 month-old adult sedentary control group, and 4) Old sedentary (OSED): a 26-month-old sedentary control group. Hematoxylin eosin staining was performed to observe the pathological changes of kidney tissue injury in rats; Masson's staining to observe the deposition of collagen fibers in rat kidney tissues; and western blotting to detect the expression levels of IL-6, IL 1beta, p53, p21, TNF-alpha, GPX4, KAEP 1, NRF2, SLC7A11, and other proteins in kidney tissues. Results: Compared with the ASED group, the OSED group showed significant morphological changes in renal tubules and glomeruli, which were swollen and deformed, with a small number of inflammatory cells infiltrated in the tubules. Compared with the OSED group, the expression levels of inflammation-related proteins such as IL-1beta, IL-6, TNF alpha, and MMP3 were significantly lower in the LLE group. Quantitative immunofluorescence analysis and western blotting revealed that compared with the ASED group, KAEP 1 protein fluorescence intensity and protein expression levels were significantly enhanced, while Klotho and NRF2 protein fluorescence intensity and protein expression levels were reduced in the OSED group. Compared with the OSED group, KAEP 1 protein fluorescence intensity and protein expression levels were reduced in the LLE and OMICT groups. Klotho and KAEP 1 protein expression levels and immunofluorescence intensity were higher in the LLE group than in the OSED group. The expression levels of GPX4 and SLC7A11, two negative marker proteins associated with ferroptosis, were significantly higher in the LLE group than in the OSED group, while the expression of p53 a cellular senescence-associated protein that negatively regulates SLC7A11, and the downstream protein p21 were significantly decreased. LLE may ameliorated aging-induced oxidative stress, inflammatory response, apoptosis, and ferroptosis by regulating Klotho and synergistically activating the NRF2/KAEP 1 pathway. Keywords: Life-long exercise, Moderate intensity continuous training, Aging, Kidney tissue, Ferroptosis.
Zobrazit více v PubMed
Kimura T, Isaka Y, Yoshimori T. Autophagy and kidney inflammation. Autophagy. 2017 Jun 3;13(6):997–1003. doi: 10.1080/15548627.2017.1309485. PubMed DOI PMC
Zhou XJ, Rakheja D, Yu X, Saxena R, Vaziri ND, Silva FG. The aging kidney. Kidney Int. 2008 Sep;74(6):710–20. PubMed
Zeisberg Michael, Neilson Eric G. Mechanisms of tubulointerstitial fibrosis. JASN. 2010;21(11):1819–34. doi: 10.1681/ASN.2010080793. PubMed DOI
Jung KJ, Min KJ, Park JW, Park KM, Kwon TK. Carnosic acid attenuates unilateral ureteral obstruction-induced kidney fibrosis via inhibition of Akt-mediated Nox4 expression. Free Radic Biol Med. 2016 Aug;97:50–57. doi: 10.1016/j.freeradbiomed.2016.05.020. PubMed DOI
Denic A, Glassock RJ, Rule AD. Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis. 2016 Jan;23(1):19–28. doi: 10.1053/j.ackd.2015.08.004. PubMed DOI PMC
Hans-Joachim Anders, Schaefer Liliana. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol: JASN. 2014;25(7):1387–400. doi: 10.1681/ASN.2014010117. PubMed DOI PMC
Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169(1):132–147.e16. doi: 10.1016/j.cell.2017.02.031. PubMed DOI PMC
Tower J. Programmed cell death in aging. Ageing Research Reviews. 2015;23(Part A):90–100. doi: 10.1016/j.arr.2015.04.002. PubMed DOI PMC
Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005 Feb 25;120(4):483–95. doi: 10.1016/j.cell.2005.02.001. PubMed DOI
Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kitamura H, Matsui I, et al. Autophagy guards against cisplatin-induced acute kidney injury. Am J Pathol. 2012;180(2):517–25. doi: 10.1016/j.ajpath.2011.11.001. PubMed DOI
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021 Apr;22(4):266–282. doi: 10.1038/s41580-020-00324-8. PubMed DOI PMC
Wang J, Liu Y, Wang Y, Sun L. The cross-link between ferroptosis and kidney diseases. Oxid Med Cell Longev. 2021 May 3;2021:6654887. doi: 10.1155/2021/6654887. PubMed DOI PMC
Mora JC, Valencia WM. Exercise and Older Adults. Clin Geriatr Med. 2018;34(1):145–162. doi: 10.1016/j.cger.2017.08.007. PubMed DOI
Ruegsegger GN, Booth FW. Health benefits of exercise. Cold Spring Harb Perspect Med. 2018;8(7):a029694. doi: 10.1101/cshperspect.a029694. PubMed DOI PMC
Wang HT, Yang WQ, Liu YQ. Effects of aerobic exercise on Nrf2/GPX4/Ferroptosis pathway in myocardial injury in high-fat diet mice (in Chinese) Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2022;38(2):143–148. PubMed
Padilha CS, Figueiredo C, Minuzzi LG, Chimin P, Deminice R, Krüger K, Rosa-Neto JC, et al. Immunometabolic responses according to physical fitness status and lifelong exercise during aging: New roads for exercise immunology. Ageing Res Rev. 2021;68:101341. doi: 10.1016/j.arr.2021.101341. PubMed DOI
Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 2018;1865(5):721–733. doi: 10.1016/j.bbamcr.2018.02.010. PubMed DOI
Chen K, Wang S, Sun QW, Zhang B, Ullah M, Sun Z. Klotho Deficiency Causes Heart Aging via Impairing the Nrf2-GR Pathway. Circ Res. 2021;128(4):492–507. doi: 10.1161/CIRCRESAHA.120.317348. PubMed DOI PMC
Gao HE, Wu DS, Sun L, Yang LD, Qiao YB, Ma S, Wu ZJ, et al. Effects of lifelong exercise on age-related body composition, oxidative stress, inflammatory cytokines, and skeletal muscle proteome in rats. Mech Ageing Dev. 2020;189:111262. doi: 10.1016/j.mad.2020.111262. PubMed DOI
Li FH, Sun L, Wu DS, Gao HE, Min Z. Proteomics-based identification of different training adaptations of aged skeletal muscle following long-term high-intensity interval and moderate-intensity continuous training in aged rats. Aging (Albany NY) 2019;11(12):4159–4182. doi: 10.18632/aging.102044. PubMed DOI PMC
Wang WJ, Cai GY, Ning YC, Cui J, Hong Q, Bai XY, Xu XM, et al. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats. Sci Rep. 2016;6:30292. doi: 10.1038/srep30292. PubMed DOI PMC
Kooman JP, van der Sande FM, Leunissen KM. Kidney disease and aging: A reciprocal relation. Exp Gerontol. 2017;87(Pt B):156–159. doi: 10.1016/j.exger.2016.02.003. PubMed DOI
Gao Q, Chen F, Zhang L, Wei A, Wang Y, Wu Z, Cao W. Inhibition of DNA methyltransferase aberrations reinstates antioxidant aging suppressors and ameliorates renal aging. Aging Cell. 2022;21(1):e13526. doi: 10.1111/acel.13526. PubMed DOI PMC
Chen Q, Cai J, Li X, Song A, Guo H, Sun Q, Yang C, Yang P. Progranulin promotes regeneration of inflammatory periodontal bone defect in rats via anti-inflammation, osteoclastogenic inhibition, and osteogenic promotion. Inflammation. 2019;42(1):221–234. doi: 10.1007/s10753-018-0886-4. PubMed DOI
Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13(1):11–22. doi: 10.1016/j.cmet.2010.12.008. PubMed DOI PMC
Sun L, Li FH, Li T, Min Z, Yang LD, Gao HE, Wu DS, et al. Effects of high-intensity interval training on adipose tissue lipolysis, inflammation, and metabolomics in aged rats. Pflugers Arch. 2020;472(2):245–258. doi: 10.1007/s00424-020-02351-y. PubMed DOI
Xu TT, Li H, Dai Z, Lau GK, Li BY, Zhu WL, Liu XQ, et al. Spermidine and spermine delay brain aging by inducing autophagy in SAMP8 mice. Aging (Albany NY) 2020;12(7):6401–6414. doi: 10.18632/aging.103035. PubMed DOI PMC
Lu J, Temp U, Müller-Hartmann A, Esser J, Grönke S, Partridge L. Sestrin is a key regulator of stem cell function and lifespan in response to dietary amino acids. Nat Aging. 2021;1(1):60–72. doi: 10.1038/s43587-020-00001-30. PubMed DOI
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, et al. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843. doi: 10.1155/2019/5080843. PubMed DOI PMC
Vucicevic K, Jakovljevic V, Colovic N, Tosic N, Kostic T, Glumac I, Pavlovic S, et al. Association of bax expression and bcl2/bax ratio with clinical and molecular prognostic markers in chronic lymphocytic leukemia. J Med Biochem. 2016;35(2):150–157. doi: 10.1515/jomb-2015-0017. PubMed DOI PMC
Zhi-Hui Huang, Liu Hao. Change of apoptosis level of brain and kidney in aged rats and the intervention effects of aerobic exercise. J Shandong Inst Physical Edu and Sports. (91) 2008;(08):47–50.
Done AJ, Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biol. 2016;10:191–199. doi: 10.1016/j.redox.2016.10.003. PubMed DOI PMC
Alves FM, Ayton S, Bush AI, Lynch GS, Koopman R. Age-related changes in skeletal muscle iron homeostasis. J Gerontol A Biol Sci Med Sci. 2023 Jan 26;78(1):16–24. doi: 10.1093/gerona/glac139. PubMed DOI
Fathi R, Nasiri K, Akbari A, Ahmadi-KaniGolzar F, Farajtabar Z. Exercise protects against ethanol-induced damage in rat heart and liver through the inhibition of apoptosis and activation of NRF2/Keap-1/HO-1 pathway. Life Sci. 2020;256:117958. doi: 10.1016/j.lfs.2020.117958. PubMed DOI
Liu F, Wu S, Ren H, Gu J. Klotho suppresses RIG-I-mediated senescence-associated inflammation. Nat Cell Biol. 2011;13(3):254–62. doi: 10.1038/ncb2167. PubMed DOI
Angulo J, El Assar M, Rodríguez-Mañas L. Frailty and sarcopenia as the basis for the phenotypic manifestation of chronic diseases in older adults. Mol Aspects Med. 2016;50:1–32. doi: 10.1016/j.mam.2016.06.001. PubMed DOI
Guo Yue, Zou Jing, Wu Lingling, Zhuang Xiaodong, Liao Xinxue. Klotho Attenuates Hyperglycemia-Induced Cardiac Hypertrophy and Dysfunction by Concomitantly Activating Nrf2 and Brg1. Circulation. 2019;140:A14694. PubMed
Maltese G, Psefteli PM, Rizzo B, Srivastava S, Gnudi L, Mann GE, Siow RC. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J Cell Mol Med. 2017;21(3):621–627. doi: 10.1111/jcmm.12996. PubMed DOI PMC
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, et al. Dissecting the crosstalk between NRF2 and NF-κB response pathways in drug-induced toxicity. Front Cell Dev Biol. 2022;9:809952. doi: 10.3389/fcell.2021.809952. PubMed DOI PMC
Bishop NC, Burton JO, Graham-Brown MPM, Stensel DJ, Viana JL, Watson EL. Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits. Nat Rev Nephrol. 2023;19(4):244–256. doi: 10.1038/s41581-022-00675-9. PubMed DOI
Shiyu Han. Research of relationship between kidney and aging from theory of “Man Eight and Woman Seven” in Suwen·Shanggu Tianzhen. Clin J Trad Chinese Med. 2017;29:76–78.
Dhillon RJ, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med. 2017;33(1):17–26. doi: 10.1016/j.cger.2016.08.002. PubMed DOI PMC
Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, Bandinelli S, et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. J Gerontol A Biol Sci Med Sci. 2014;69(4):438–46. doi: 10.1093/gerona/glt149. PubMed DOI PMC
Kirchengast S, Huber J. Gender and age differences in lean soft tissue mass and sarcopenia among healthy elderly. Anthropol Anz. 2009;67(2):139–151. doi: 10.1127/0003-5548/2009/0018. PubMed DOI
Shin MJ, Jeon YK, Kim IJ. Testosterone and sarcopenia. World J Mens Health. 2018;36(3):192–198. https://doi.org/10.5534/wjmh.2012.30.3.192, https://doi.org/10.5534/wjmh.180001. PubMed DOI PMC
Wu R, Delahunt E, Ditroilo M, Lowery M, De Vito G. Effects of age and sex on neuromuscular-mechanical determinants of muscle strength. Age. 2016;38:57. doi: 10.1007/s11357-016-9921-2. PubMed DOI PMC
Bin You, Xiuzhu Huang, Yu Lin, Xi Huang. Changes in bone morphology, bone mineral density and bone metabolism in different parts of natural aging rats. Chinese J Tissue Eng Res. 2021;25:4118–4122. https://www.cjter.com/EN/Y2021/V25/I26/4118 .