Western Diet-Induced Nonalcoholic Fatty Liver Disease Mice Mimic the Key Transcriptomic Signatures Observed in Humans

. 2024 Aug 31 ; 73 (4) : 593-608.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39264080

Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver in the absence of excessive alcohol consumption or a secondary cause of hepatic steatosis. The prevalence of NAFLD is increasing worldwide and its management has become a public health concern. Animal models are traditionally used to elucidate disease mechanisms and identify potential drug targets; however, their translational aspects in human diseases have not been fully established. This study aimed to clarify the utility of animal models for translational research by assessing their relevance to human diseases using gene expression analysis. Weighted gene co-expression network analysis of liver tissues from Western diet (WD)-induced NAFLD mice was performed to identify the modules associated with disease progression. Moreover, the similarity of the gene co-expression network across species was evaluated using module preservation analysis. Nineteen disease-associated modules were identified. The brown module was positively associated with disease severity, and functional analyses indicated that it may be involved in inflammatory responses in immune cells. Moreover, the gene co-expression network of the brown module was highly preserved in human NAFLD liver gene expression datasets. These results indicate that WD-induced NAFLD mice have similar gene co-expression networks (especially genes associated with inflammatory responses) to humans and are thought to be a useful experimental tool for preclinical research on NAFLD. Keywords: Nonalcoholic fatty liver disease (NAFLD), Weighted gene co-expression network analysis (WGCNA), Western diet (WD).

Zobrazit více v PubMed

Calzadilla Bertot L, Adams LA. The natural course of non-alcoholic fatty liver disease. Int J Mol Sci. 2016:17. doi: 10.3390/ijms17050774. PubMed DOI PMC

Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, Wai-Sun Wong V, Yilmaz Y, George J, Fan J, Vos MB. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2019;69:2672–2682. doi: 10.1002/hep.30251. PubMed DOI

Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77:1335–1347. doi: 10.1097/HEP.0000000000000004. PubMed DOI PMC

Younossi ZM, Stepanova M, Ong J, Trimble G, AlQahtani S, Younossi I, Ahmed A, Racila A, Henry L. Nonalcoholic steatohepatitis is the most rapidly increasing indication for liver transplantation in the United States. Clin Gastroenterol Hepatol. 2021;19:580–589e585. doi: 10.1016/j.cgh.2020.05.064. PubMed DOI

Allen AM, Lazarus JV, Younossi ZM. Healthcare and socioeconomic costs of NAFLD: A global framework to navigate the uncertainties. J Hepatol. 2023 doi: 10.1016/j.jhep.2023.01.026. PubMed DOI PMC

Harrison SA, Loomba R, Dubourg J, Ratziu V, Noureddin M. Clinical trial landscape in NASH. Clin Gastroenterol Hepatol. 2023 doi: 10.1016/j.cgh.2023.03.041. PubMed DOI

Oligschlaeger Y, Shiri-Sverdlov R. NAFLD preclinical models: More than a handful, less of a Concern? Biomedicines. 2020:8. doi: 10.3390/biomedicines8020028. PubMed DOI PMC

Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of human relevant preclinical animal models in navigating NAFLD to MAFLD paradigm. Int J Mol Sci. 2022:23. doi: 10.3390/ijms232314762. PubMed DOI PMC

Asgharpour A, Cazanave SC, Pacana T, Seneshaw M, Vincent R, Banini BA, Kumar DP, Daita K, Min HK, Mirshahi F, Bedossa P, Sun X, Hoshida Y, Koduru SV, Contaifer D, Jr, Warncke UO, Wijesinghe DS, Sanyal AJ. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J Hepatol. 2016;65:579–588. doi: 10.1016/j.jhep.2016.05.005. PubMed DOI PMC

Abe N, Kato S, Tsuchida T, Sugimoto K, Saito R, Verschuren L, Kleemann R, Oka K. Longitudinal characterization of diet-induced genetic murine models of non-alcoholic steatohepatitis with metabolic, histological, and transcriptomic hallmarks of human patients. Biol Open. 2019:8. doi: 10.1242/bio.041251. PubMed DOI PMC

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC

Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics. 2008;24:719–720. doi: 10.1093/bioinformatics/btm563. PubMed DOI

MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, Gupta R, Cheng ML, Liu LY, Camat D, Chung SW, Seliga RK, Shao Z, Lee E, Ogawa S, Ogawa M, Wilson MD, Fish JE, Selzner M, Ghanekar A, Grant D, Greig P, Sapisochin G, Selzner N, Winegarden N, Adeyi O, Keller G, Bader GD, McGilvray ID. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 2018;9:4383. doi: 10.1038/s41467-018-06318-7. PubMed DOI PMC

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. 2011;7:e1001057. doi: 10.1371/journal.pcbi.1001057. PubMed DOI PMC

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–D612. doi: 10.1093/nar/gkaa1074. PubMed DOI PMC

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Hagstrom H, Nasr P, Ekstedt M, Hammar U, Stal P, Hultcrantz R, Kechagias S. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J Hepatol. 2017;67:1265–1273. doi: 10.1016/j.jhep.2017.07.027. PubMed DOI

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. doi: 10.1038/nrgastro.2017.109. PubMed DOI

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. PubMed DOI PMC

Santos J, Maio MC, Lemes MA, Laurindo LF, Haber J, Bechara MD, Prado PSD, Jr, Rauen EC, Costa F, Pereira BCA, Flato UAP, Goulart RA, Chagas EFB, Barbalho SM. Non-alcoholic steatohepatitis (NASH) and organokines: What is now and what will be in the future. Int J Mol Sci. 2022:23. doi: 10.3390/ijms23010498. PubMed DOI PMC

Vergara D, Casadei-Gardini A, Giudetti AM. Oxidative molecular mechanisms underlying liver diseases: From systems biology to the personalized medicine. Oxid Med Cell Longev. 2019;2019:7864316. doi: 10.1155/2019/7864316. PubMed DOI PMC

Ioannou GN. The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metab. 2016;27:84–95. doi: 10.1016/j.tem.2015.11.008. PubMed DOI

Guveli H, Kenger EB, Ozlu T, Kaya E, Yilmaz Y. Macro- and micronutrients in metabolic (dysfunction) associated fatty liver disease: association between advanced fibrosis and high dietary intake of cholesterol/saturated fatty acids. Eur J Gastroenterol Hepatol. 2021;33:e390–e394. doi: 10.1097/MEG.0000000000002110. PubMed DOI

Federico A, Rosato V, Masarone M, Torre P, Dallio M, Romeo M, Persico M. The role of fructose in non-alcoholic steatohepatitis: Old relationship and new insights. Nutrients. 2021:13. doi: 10.3390/nu13041314. PubMed DOI PMC

Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: A dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol. 2017;8:1159. doi: 10.3389/fimmu.2017.01159. PubMed DOI PMC

Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network for global discovery of conserved genetic modules. Science. 2003;302:249–255. doi: 10.1126/science.1087447. PubMed DOI

Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD - more than inflammation. Nat Rev Endocrinol. 2022;18:461–472. doi: 10.1038/s41574-022-00675-6. PubMed DOI

Vonderlin J, Chavakis T, Sieweke M, Tacke F. The multifaceted roles of macrophages in NAFLD pathogenesis. Cell Mol Gastroenterol Hepatol. 2023;15:1311–1324. doi: 10.1016/j.jcmgh.2023.03.002. PubMed DOI PMC

Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–113. doi: 10.1038/nrg1272. PubMed DOI

Tomasello E, Vivier E. KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. Eur J Immunol. 2005;35:1670–1677. doi: 10.1002/eji.200425932. PubMed DOI

Turnbull IR, McDunn JE, Takai T, Townsend RR, Cobb JP, Colonna M. DAP12 (KARAP) amplifies inflammation and increases mortality from endotoxemia and septic peritonitis. J Exp Med. 2005;202:363–369. doi: 10.1084/jem.20050986. PubMed DOI PMC

de Mingo A, de Gregorio E, Moles A, Tarrats N, Tutusaus A, Colell A, Fernandez-Checa JC, Morales A, Mari M. Cysteine cathepsins control hepatic NF-kappaB-dependent inflammation via sirtuin-1 regulation. Cell Death Dis. 2016;7:e2464. doi: 10.1038/cddis.2016.368. PubMed DOI PMC

Liu XH, Zhou JT, Yan CX, Cheng C, Fan JN, Xu J, Zheng Q, Bai Q, Li Z, Li S, Li X. Single-cell RNA sequencing reveals a novel inhibitory effect of ApoA4 on NAFL mediated by liver-specific subsets of myeloid cells. Front Immunol. 2022;13:1038401. doi: 10.3389/fimmu.2022.1038401. PubMed DOI PMC

Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010;10:387–402. doi: 10.1038/nri2765. PubMed DOI PMC

Luci C, Vieira E, Bourinet M, Rousseau D, Bonnafous S, Patouraux S, Lefevre L, Larbret F, Prod’homme V, Iannelli A, Tran A, Anty R, Bailly-Maitre B, Deckert M, Gual P. SYK-3BP2 pathway activity in parenchymal and myeloid cells is a key pathogenic factor in metabolic steatohepatitis. Cell Mol Gastroenterol Hepatol. 2022;13:173–191. doi: 10.1016/j.jcmgh.2021.08.004. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...