First Application of Whole Genome Sequencing in Myelinated Retinal Nerve Fibers (MRNF)
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, kazuistiky
PubMed
39264086
PubMed Central
PMC11414596
DOI
10.33549/physiolres.935301
PII: 935301
Knihovny.cz E-zdroje
- MeSH
- genetická predispozice k nemoci MeSH
- lidé MeSH
- mladý dospělý MeSH
- nervová vlákna myelinizovaná * patologie MeSH
- retina patologie MeSH
- sekvenování celého genomu * MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Genetic features are currently unknown in myelinated retinal nerve fibers (MRNF). For a 20-year-old asymptomatic female with unilateral MRNF, we performed whole genome sequencing (WGS) by standard workflow protocol to produce contiguous long-read sequences with Illumina DNA PCR-Free Prep. After tagmentation, libraries were sequenced on separate runs via NovaSeq 6000 platform at 2 x 150bp read length. Gene variants included rs2248799, rs2672589, rs7555070, rs247616_T and rs2043085_C all associated with an increased macular degeneration risk, and seven novel variants of uncertain significance. For optic disc enlargement, variants rs9988687_A, rs11079419_T, rs6787363 and rs10862708_A suggested an increased risk for this condition. In contrast, modeling revealed retinal detachment risk was reduced by variants identified at rs9651980_T, rs4373767_T, and rs7940691_T which were among five other previously unreported variants. WGS data placed proband at the 66th and 64th percentiles for disc anomaly and retinal detachment risk, respectively. Additionally, risk determined from 16 loci associated with age-related macular degeneration found the patient to be at the 18th percentile for this diagnosis (i.e., below average genetic predisposition). Fundoscopic findings showed mean RNFL thickness was lower with MRNF (77 OS vs. 96?m OD) and RNFL symmetry was impaired (43 %) but stable between 2020 and 2023. Rim area and cup volume were also substantially different (2.33 OS vs. 1.34mm2 OD, and 0.001 OS vs. 0.151mm3 OD, respectively). As the first known evaluation of MRNF via WGS, these data reveal a mixed picture with variants associated with different risks for potentially related ocular pathologies. In addition, we identify multiple new variants of unknown significance. Factors affecting gene expression in MRNF require further study. Key words: Whole genome sequencing, Retina, Myelination, Anatomy, Gene variants.
Zobrazit více v PubMed
Panigrahi A, Singh A, Gupta V. Syndrome of myelinated nerve fibers, hyperopia, strabismus, and amblyopia. Ophthalmol Retina. 2022;6(12):1153. doi: 10.1016/j.oret.2022.10.003. doi: 10.1016/j.oret.2022.10.003. PubMed DOI
Ibrahim I, Scriver T, Basalom SA. No, it is not mutually exclusive! A case report of a girl with two genetic diagnoses: Craniofrontonasal dysplasia and pontocerebellar hypoplasia type 1B. Clin Case Rep. 2023;11(5):e7332. doi: 10.1002/ccr3.7332. PubMed DOI PMC
Han X, Qassim A, An J, Marshall H, Zhou T, Ong JS, et al. Genome-wide association analysis of 95,549 individuals identifies novel loci and genes influencing optic disc morphology. Hum Mol Genet. 2019;28(21):3680–3690. doi: 10.1093/hmg/ddz193. PubMed DOI
Boutin TS, Charteris DG, Chandra A, Campbell S, Hayward C, Campbell A, et al. Insights into the genetic basis of retinal detachment. Hum Mol Genet. 2020;29(4):689–702. doi: 10.1093/hmg/ddz294. PubMed DOI PMC
Han X, Gharahkhani P, Mitchell P, Liew G, Hewitt AW, MacGregor S. Genome-wide meta-analysis identifies novel loci associated with age-related macular degeneration. J Hum Genet. 2020;65(8):657–65. doi: 10.1038/s10038-020-0750-x. PubMed DOI
Sills ES, Wood SH. Phenotype from SAMD9 mutation at 7p21.2 appears attenuated by novel compound heterozygous variants at RUNX2 and SALL1. Glob Med Genet. 2022;9(2):124–8. doi: 10.1055/s-0041-1740018. doi: 10.1055/s-0041-1740018. PubMed DOI PMC
Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010;42(7):570–5. doi: 10.1038/ng.610. PubMed DOI PMC
Magoon EH, Robb RM. Development of myelin in human optic nerve and tract. A light and electron microscopic study. Arch Ophthalmol. 1981;99(4):655–9. doi: 10.1001/archopht.1981.03930010655011. PubMed DOI
Ffrench-Constant C, Miller RH, Burne JF, Raff MC. Evidence that migratory oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells are kept out of the rat retina by a barrier at the eye-end of the optic nerve. J Neurocytol. 1988;17(1):13–25. doi: 10.1007/BF01735374. PubMed DOI
Balraj A, Clarkson-Paredes C, Miller RH. Loss of optic nerve oligodendrocytes during maturation alters retinal organization. Exp Eye Res. 2023;233:109540. doi: 10.1016/j.exer.2023.109540. PubMed DOI
Postlethwait JH, Yan YL, Desvignes T, Allard C, Titus T, Le François NR, et al. Embryogenesis and early skeletogenesis in the antarctic bullhead notothen, Notothenia coriiceps. Dev Dyn. 2016;245(11):1066–80. doi: 10.1002/dvdy.24437. PubMed DOI PMC
Sun X, Gao X, Mu BK, Wang Y. Understanding the role of corneal biomechanics-associated genetic variants by bioinformatic analyses. Int Ophthalmol. 2022;42(3):981–8. doi: 10.1007/s10792-021-02081-9. PubMed DOI
Ji N, Guo Y, Liu S, Zhu M, Tu Y, Du J, et al. MEK/ERK/RUNX2 Pathway-mediated IL-11 autocrine promotes activation of Müller glial cells during diabetic retinopathy. Curr Eye Res. 2022 Dec;47(12):1622–30. doi: 10.1080/02713683.2022.2129070. doi: 10.1080/02713683.2022.2129070. PubMed DOI
Valdivia AO, He Y, Ren X, Wen D, Dong L, Nazari H, et al. Probable treatment targets for diabetic retinopathy based on an integrated proteomic and genomic analysis. Transl Vis Sci Technol. 2023;12(2):8. doi: 10.1167/tvst.12.2.8. PubMed DOI PMC
Koso H, Tsuhako A, Lai CY, Baba Y, Otsu M, Ueno K, et al. Conditional rod photoreceptor ablation reveals Sall1 as a microglial marker and regulator of microglial morphology in the retina. Glia. 2016;64(11):2005–24. doi: 10.1002/glia.23038. PubMed DOI
Koso H, Nishinakamura R, Watanabe S. Sall1 Regulates Microglial Morphology Cell Autonomously in the Developing Retina. Adv Exp Med Biol. 2018;1074:209–15. doi: 10.1007/978-3-319-75402-4_26. PubMed DOI
Tanase-Nakao K, Olson TS, Narumi S. MIRAGE Syndrome. In: Adam MP, Mirzaa GM, Pagon RA, et al., editors. GeneReviews. Seattle (WA): University of Washington, Seattle; 2020. Nov 25, pp. 1993–2023. https://www.ncbi.nlm.nih.gov/books/NBK564655/ PubMed