Tea Prepared from Dried Cannabis: What Do We Drink?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39264724
PubMed Central
PMC11440496
DOI
10.1021/acs.jafc.4c05940
Knihovny.cz E-zdroje
- Klíčová slova
- THC isomers, UHPLC-HRMS/MS, bioactive compounds, cannabis tea, cannflavins, flavonoids, phytocannabinoids,
- MeSH
- čaj chemie MeSH
- Cannabis * chemie MeSH
- flavonoidy chemie analýza MeSH
- kanabinoidy analýza chemie MeSH
- lidé MeSH
- rostlinné extrakty chemie MeSH
- tandemová hmotnostní spektrometrie MeSH
- tetrahydrokanabinol analýza chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- čaj MeSH
- flavonoidy MeSH
- kanabinoidy MeSH
- rostlinné extrakty MeSH
- tetrahydrokanabinol MeSH
Besides many other uses, dried Cannabis may be used for "tea" preparation. This study focused on a comprehensive characterization of an aqueous infusion prepared according to a common practice from three fairly different Cannabis cultivars. The transfer of 42 phytocannabinoids and 12 major bioactive compounds (flavonoids) into the infusion was investigated using UHPLC-HRMS/MS. Phytocannabinoid acids were transferred generally in a higher extent compared to their counterparts; in the case of Δ9-THC, it was only in the range of 0.4-1.9% of content in the Cannabis used. A dramatic increase of phytocannabinoids, mainly of the neutral species, occurred when cream was added during steeping, and the transfer of Δ9-THC into "tea" achieved a range of 53-64%. Under such conditions, drinking a 250 mL cup of such tea by a 70 kg person might lead to multiple exceedance of the Acute Reference Dose (ARfD), 1 μg/kg b.w., even in the case when using hemp with a Δ9-THC content below 1% in dry weight for preparation.
Zobrazit více v PubMed
Peng H.; Shahidi F. Cannabis and Cannabis Edibles: A Review. J. Agric. Food Chem. 2021, 69 (6), 1751–1774. 10.1021/acs.jafc.0c07472. PubMed DOI
Hanuš L. O.; Meyer S. M.; Muñoz E.; Taglialatela-Scafati O.; Appendino G. Phytocannabinoids: a unified critical inventory. Nat. Prod Rep 2016, 33 (12), 1357–1392. 10.1039/C6NP00074F. PubMed DOI
Turner S. E.; Williams C. M.; Iversen L.; Whalley B. J. Molecular Pharmacology of Phytocannabinoids. Prog. Chem. Org. Nat. Prod 2017, 103, 61–101. 10.1007/978-3-319-45541-9_3. PubMed DOI
Maroon J.; Bost J. Review of the neurological benefits of phytocannabinoids. Surg Neurol Int. 2018, 9, 91.10.4103/sni.sni_45_18. PubMed DOI PMC
ElSohly M. A.; Radwan M. M.; Gul W.; Chandra S.; Galal A.. Phytochemistry of Cannabis sativa L. In Phytocannabinoids: Unraveling the Complex Chemistry and Pharmacology of Cannabis sativa; Kinghorn A. D., Falk H., Gibbons S., Kobayashi J. i., Eds.; Springer International Publishing, 2017; pp 1–36.
Liu Y.; Liu H.-Y.; Li S.-H.; Ma W.; Wu D.-T.; Li H.-B.; Xiao A.-P.; Liu L.-L.; Zhu F.; Gan R.-Y. Cannabis sativa bioactive compounds and their extraction, separation, purification, and identification technologies: An updated review. TrAC Trends in Analytical Chemistry 2022, 149, 11655410.1016/j.trac.2022.116554. DOI
Cogan P. S. The ‘entourage effect’ or ‘hodge-podge hashish’: the questionable rebranding, marketing, and expectations of cannabis polypharmacy. Expert Review of Clinical Pharmacology 2020, 13 (8), 835–845. 10.1080/17512433.2020.1721281. PubMed DOI
Anand U.; Pacchetti B.; Anand P.; Sodergren M. H. Cannabis-based medicines and pain: a review of potential synergistic and entourage effects. Pain Management 2021, 11 (4), 395–403. 10.2217/pmt-2020-0110. PubMed DOI
Caprioglio D.; Amin H. I. M.; Taglialatela-Scafati O.; Muñoz E.; Appendino G. Minor Phytocannabinoids: A Misleading Name but a Promising Opportunity for Biomedical Research. Biomolecules 2022, 12 (8), 1084.10.3390/biom12081084. PubMed DOI PMC
Lowe H.; Steele B.; Bryant J.; Toyang N.; Ngwa W. Non-Cannabinoid Metabolites of Cannabis sativa L. with Therapeutic Potential. Plants 2021, 10 (2), 400.10.3390/plants10020400. PubMed DOI PMC
Bautista J. L.; Yu S.; Tian L. Flavonoids in Cannabis sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega 2021, 6 (8), 5119–5123. 10.1021/acsomega.1c00318. PubMed DOI PMC
He M.; Min J.-W.; Kong W.-L.; He X.-H.; Li J.-X.; Peng B.-W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016, 115, 74–85. 10.1016/j.fitote.2016.09.011. PubMed DOI
Lam K. Y.; Ling A. P. K.; Koh R. Y.; Wong Y. P.; Say Y. H. A Review on Medicinal Properties of Orientin. Advances in Pharmacological Sciences 2016, 2016, 410459510.1155/2016/4104595. PubMed DOI PMC
Fischer B.; Russell C.; Sabioni P.; van den Brink W.; Le Foll B.; Hall W.; Rehm J.; Room R. Lower-Risk Cannabis Use Guidelines: A Comprehensive Update of Evidence and Recommendations. American Journal of Public Health 2017, 107 (8), e1–e12. 10.2105/AJPH.2017.303818. PubMed DOI PMC
Reason D. A.; Grainger M. N. C.; Lane J. R. Optimization of the Decarboxylation of Cannabis for Commercial Applications. Ind. Eng. Chem. Res. 2022, 61 (23), 7823–7832. 10.1021/acs.iecr.2c00826. DOI
Giroud C.; Ménétrey A.; Augsburger M.; Buclin T.; Sanchez-Mazas P.; Mangin P. Hemp tea versus hemp milk: Behavioral, physiological effects, blood, urine, saliva and sweat cannabinoids levels following ingestion by two groups of six healthy volunteers. Problems of Forensic Science 2000, 42, 102–110.
Zoller O.; Rhyn P.; Zimmerli B. High-performance liquid chromatographic determination of delta9-tetrahydrocannabinol and the corresponding acid in hemp containing foods with special regard to the fluorescence properties of delta9-tetrahydrocannabinol. J. Chromatogr A 2000, 872 (1–2), 101–110. 10.1016/S0021-9673(99)01287-X. PubMed DOI
Hazekamp A.; Bastola K.; Rashidi H.; Bender J.; Verpoorte R. Cannabis tea revisited: A systematic evaluation of the cannabinoid composition of cannabis tea. Journal of Ethnopharmacology 2007, 113 (1), 85–90. 10.1016/j.jep.2007.05.019. PubMed DOI
Knezevic F.; Nikolai A.; Marchart R.; Sosa S.; Tubaro A.; Novak J. Residues of herbal hemp leaf teas – How much of the cannabinoids remain?. Food Control 2021, 127, 10814610.1016/j.foodcont.2021.108146. DOI
Triesch N.; Vijayakumar N.; Weigel S.; These A. Cannabinoid contents in hemp teas and estimation of their transfer into tea infusions. Food Additives & Contaminants: Part A 2023, 40 (7), 890–901. 10.1080/19440049.2023.2224455. PubMed DOI
Davis M.Overview of the Endocannabinoid System and Endocannabinoidome. In Cannabis and Cannabinoid-Based Medicines in Cancer Care; Springer, 2022; pp 1–40,10.1007/978-3-030-89918-9_1. DOI
Aizpurua-Olaizola O.; Soydaner U.; Öztürk E.; Schibano D.; Simsir Y.; Navarro P.; Etxebarria N.; Usobiaga A. Evolution of the Cannabinoid and Terpene Content during the Growth of Cannabis sativa Plants from Different Chemotypes. J. Nat. Prod. 2016, 79 (2), 324–331. 10.1021/acs.jnatprod.5b00949. PubMed DOI
Ieritano C.; Thomas P.; Hopkins W. S. Argentination: A Silver Bullet for Cannabinoid Separation by Differential Mobility Spectrometry. Anal. Chem. 2023, 95 (22), 8668–8678. 10.1021/acs.analchem.3c01241. PubMed DOI
Roman M. G.; Cheng Y.-C.; Kerrigan S.; Houston R. Evaluation of tetrahydrocannabinolic acid (THCA) synthase polymorphisms for distinguishing between marijuana and hemp. Journal of Forensic Sciences 2022, 67 (4), 1370–1381. 10.1111/1556-4029.15045. PubMed DOI
Bijelić K.; Torović L.; Prpa B.; Čonić B. S.; Hitl M.; Kladar N. Hemp-based tea - Impact of preparation technique on major cannabinoids content and consumers’ exposure and health risk. Food Control 2023, 152, 10982210.1016/j.foodcont.2023.109822. DOI
Benes F.; Binova Z.; Zlechovcova M.; Maly M.; Stranska M.; Hajslova J. Thermally induced changes in the profiles of phytocannabinoids and other bioactive compounds in Cannabis sativa L. inflorescences. Food Research International 2024, 190, 11448710.1016/j.foodres.2024.114487. PubMed DOI
Pertwee R. G.Handbook of Cannabis; Oxford University Press, USA, 2014.
ElSohly M. A.; Slade D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sciences 2005, 78 (5), 539–548. 10.1016/j.lfs.2005.09.011. PubMed DOI
Citti C.; Russo F.; Sgrò S.; Gallo A.; Zanotto A.; Forni F.; Vandelli M. A.; Laganà A.; Montone C. M.; Gigli G.; et al. Pitfalls in the analysis of phytocannabinoids in cannabis inflorescence. Anal Bioanal Chem. 2020, 412 (17), 4009–4022. 10.1007/s00216-020-02554-3. PubMed DOI
Guo T. T.; Zhang J. C.; Zhang H.; Liu Q. C.; Zhao Y.; Hou Y. F.; Bai L.; Zhang L.; Liu X. Q.; Liu X. Y.; et al. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa. J. Asian Nat. Prod Res. 2017, 19 (8), 793–802. 10.1080/10286020.2016.1248947. PubMed DOI
Duggan P.The Chemistry of Cannabis and Cannabinoids. Aust. J. Chem. 2021, 74, 369.10.1071/CH21006. DOI
Hanuš L. O.; Meyer S. M.; Muñoz E.; Taglialatela-Scafati O.; Appendino G. Phytocannabinoids: a unified critical inventory. Natural Product Reports 2016, 33 (12), 1357–1392. 10.1039/C6NP00074F. PubMed DOI
Andre C. M.; Hausman J.-F.; Guerriero G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front Plant Sci. 2016, 7, 19–19. 10.3389/fpls.2016.00019. PubMed DOI PMC
Pellati F.; Brighenti V.; Sperlea J.; Marchetti L.; Bertelli D.; Benvenuti S. New Methods for the Comprehensive Analysis of Bioactive Compounds in Cannabis sativa L. (hemp). Molecules 2018, 23 (10), 2639.10.3390/molecules23102639. PubMed DOI PMC
Kumar V.; Sharma A.; Kohli S.; Bali S.; Sharma M.; Kumar R.; Bhardwaj R.; Thukral A. Differential distribution of polyphenols in plants using multivariate techniques. Biotechnology Research and Innovation 2019, 3, 1.10.1016/j.biori.2019.03.001. DOI
Yan X.; Tang J.; dos Santos Passos C.; Nurisso A.; Simões-Pires C. A.; Ji M.; Lou H.; Fan P. Characterization of Lignanamides from Hemp (Cannabis sativa L.) Seed and Their Antioxidant and Acetylcholinesterase Inhibitory Activities. J. Agric. Food Chem. 2015, 63 (49), 10611–10619. 10.1021/acs.jafc.5b05282. PubMed DOI
Benes F.; Binova Z.; Dzuman Z.; Peukertova P.; Fenclova M.; Hajslova J. Determination of Seventeen Phytocannabinoids in Various Matrices by UHPLC–HRMS/MS. LCGC Europe 2020, 33 (1), 8–18.
Schafroth M. A.; Mazzoccanti G.; Reynoso-Moreno I.; Erni R.; Pollastro F.; Caprioglio D.; Botta B.; Allegrone G.; Grassi G.; Chicca A.; et al. Δ9-cis-Tetrahydrocannabinol: Natural Occurrence, Chirality, and Pharmacology. J. Nat. Prod. 2021, 84 (9), 2502–2510. 10.1021/acs.jnatprod.1c00513. PubMed DOI
Tolomeo F.; Russo F.; Kaczorova D.; Vandelli M. A.; Biagini G.; Laganà A.; Capriotti A. L.; Paris R.; Fulvio F.; Carbone L.; et al. Cis-Δ9-tetrahydrocannabinolic acid occurrence in Cannabis sativa L. J. Pharm. Biomed. Anal. 2022, 219, 11495810.1016/j.jpba.2022.114958. PubMed DOI
Erridge S.; Mangal N.; Salazar O.; Pacchetti B.; Sodergren M. H. Cannflavins – From plant to patient: A scoping review. Fitoterapia 2020, 146, 10471210.1016/j.fitote.2020.104712. PubMed DOI
Chemistry and Biological Activities of Cannflavins of the Cannabis Plant. Cannabis and Cannabinoid Research 2023, 8 ( (6), ), 974–985. 10.1089/can.2023.0128. PubMed DOI PMC
Formato M.; Crescente G.; Scognamiglio M.; Fiorentino A.; Pecoraro M. T.; Piccolella S.; Catauro M.; Pacifico S. (−)-Cannabidiolic Acid, a Still Overlooked Bioactive Compound: An Introductory Review and Preliminary Research. Molecules 2020, 25 (11), 2638.10.3390/molecules25112638. PubMed DOI PMC
Boulebd H. Is cannabidiolic acid an overlooked natural antioxidant? Insights from quantum chemistry calculations. New J. Chem. 2021, 46 (1), 162–168. 10.1039/D1NJ04771J. DOI
Baron E. P. Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science. Headache 2018, 58 (7), 1139–1186. 10.1111/head.13345. PubMed DOI
Scientific Opinion on the risks for human health related to the presence of tetrahydrocannabinol (THC) in milk and other food of animal origin. EFSA Journal 2015, 13 (6), 4141.10.2903/j.efsa.2015.4141. DOI
Nachnani R.; Raup-Konsavage W. M.; Vrana K. E. The Rise and Risk of Delta-8 THC (Delta-8-Tetrahydrocannabinol). Current Addiction Reports 2022, 9 (4), 622–629. 10.1007/s40429-022-00456-1. DOI
Seo C.; Jeong M.; Lee S.; Kim E. J.; Rho S.; Cho M.; Lee Y. S.; Hong J. Thermal decarboxylation of acidic cannabinoids in Cannabis species: identification of transformed cannabinoids by UHPLC-Q/TOF–MS. Journal of Analytical Science and Technology 2022, 13 (1), 42.10.1186/s40543-022-00351-4. DOI
Lewis-Bakker M. M.; Yang Y.; Vyawahare R.; Kotra L. P. Extractions of Medical Cannabis Cultivars and the Role of Decarboxylation in Optimal Receptor Responses. Cannabis and Cannabinoid Research 2019, 4 (3), 183–194. 10.1089/can.2018.0067. PubMed DOI PMC
Lewis M. M.; Yang Y.; Wasilewski E.; Clarke H. A.; Kotra L. P. Chemical Profiling of Medical Cannabis Extracts. ACS Omega 2017, 2 (9), 6091–6103. 10.1021/acsomega.7b00996. PubMed DOI PMC
Filer C. N. Acidic Cannabinoid Decarboxylation. Cannabis and Cannabinoid Research 2022, 7 (3), 262–273. 10.1089/can.2021.0072. PubMed DOI PMC