Contribution to the study of possible transport of PM10 aerosols in the eastern part of the Czech Republic

. 2024 Sep 15 ; 10 (17) : e36850. [epub] 20240824

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39281602
Odkazy

PubMed 39281602
PubMed Central PMC11399636
DOI 10.1016/j.heliyon.2024.e36850
PII: S2405-8440(24)12881-2
Knihovny.cz E-zdroje

The article deals with the assessment of air pollution in the eastern regions of the Czech Republic: Moravia and Silesia, where the limits for the protection of human health for PM and benzo[a]pyrene are significantly exceeded, especially in the north-eastern area. The extent to which this heavily polluted part of Moravia and Silesia affects the central, southern and south-eastern parts of Moravia, i.e. south-eastern part of the Czech Republic, has often been discussed but not proven. The assessment demonstrated the influence and extent of pollutant transport by determining the prevailing daily wind direction. The prevailing NE wind direction results in worse dispersion conditions and higher PM10 concentrations throughout the study area. Conversely, the SW wind direction is a carrier of better dispersion conditions with lower PM10 concentrations in the area. The effect of transport of PM10 pollution in the daily type from the NE direction can be observed at those sites located in the NE of the area of interest from the border with Poland to the Prerov site. In the case of more southerly sites, the methodology used does not allow to determine whether and to what extent they are affected by pollution transport from the northeastern part of Moravia or from neighbouring Poland. This methodology is particularly useful when only 24-h pollutant concentrations are available (not at more detailed, e.g. 1-hour intervals). The internal methodology of the Czech Hydrometeorological Institutefor calculating back trajectories of wind from ground stations is particularly applicable for detecting the origin of short-term episodes with high pollutant concentrations.

Zobrazit více v PubMed

WHO, Health effects of particulate matter . second ed. WHO Regional Office for Europe; Copenhagen, Denmark: 2013. Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia.https://iris.who.int/bitstream/handle/10665/344854/9789289000017-eng.pdf?sequence=1&isAllowed=y

WHO Ambient (outdoor) air pollution. 2020. https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

Kampa M., Castanas E. Human health effects of air pollution. Environ. Pollut. 2008;151:362–367. https://10.1016/j.envpol.2007.06.012 PubMed DOI

Pope C.A., Dockery D.W. Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manag. Assoc. 2006;56:709–742. doi: 10.1080/10473289.2006.10464485. PubMed DOI

CHMI . 2021. Air Pollution in the Czech Republic in 2020; Graphical Yearbook (Czech/English); Czech Hydrometeorological Institute.www.chmi.cz/files/portal/docs/uoco/isko/grafroc/21groc/gr21cz/UKO_rocenka_2021_komplet.pdf Prague, Czech Republic.

2016. MŽP, Sdělení odboru ochrany ovzduší, kterým se stanoví seznam stanic zahrnutých do státní sítě imisního monitoring (Communication from the Air Protection Department, which establishes a list of stations included in the national air pollution monitoring network.www.mzp.cz/web/edice.nsf/790C359F9861BDB0C1257F4800396D59/$file/Věstník_1_leden_2016_final.pdf In Czech.

Mžp . Czech Republic; Praha: 2016. Ministry of the Environment of the Czech Republic: Air Quality Improvement Program of Aglomeration Ostrava/Karviná/Frýdek-Místek—Cz08a; Ministry of the Environment of the Czech Republic. in Czech.

Mzp . Czech Republic; Praha: 2021. Ministry of the Environment of the Czech Republic: Air Quality Improvement Program of Aglomeration Ostrava/Karviná/Frýdek-Mistek—Cz08a; Ministry of the Environment of the Czech Republic. in Czech.

ČR, Zákon č. 201/2012 Sb. ze dne 2. května 2012 o ochraně ovzduší (Act No. 201/2012 Coll. of 2 May 2012 on air protection), Praha, 2012. 2012. www.mzp.cz/www/platnalegislativa.nsf/9F4906381B38F7F6C1257A94002EC4A0/%24file/Z201_2012_Sb.pdf 2785 – 2848. In Czech.

EC . EC; Brussel, Belgium: 2005. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air.https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004L0107

EC Directive 2008/50/EC of the European Parliament and of the council of 21 May 2008 on ambient air quality and clenaer air for Europe. 2008. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050

Schreiberová M., Vlasáková L., Vlček O., Šmejdířová J., Horálek J., Bieser J. Benzo[a]pyrene in the ambient air in the Czech republic: emission sources, current and long-term monitoring analysis and human exposure. Atmosphere 2020. 2020;11:955. doi: 10.3390/atmos11090955. DOI

EEA Air quality in Europe – 2020 report. EEA Technical report 09/2020. Copenhagen: EEA. 2020. https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report/at_download/file ISBN 978-92-9480-292-7, ISSN 1977-8449.

ETC/ATNI, Benzo(a)pyrene (BaP) Annual Mapping Evaluation of Its Potential Regular Updating. 2022 doi: 10.5281/zenodo.5898376. ETC/ATNI Report 18/2021 2022. DOI

Hůnová I. Ambient air quality in the Czech republic: past and present. Atmosphere. 2020;12(6):720. doi: 10.3390/atmos12060720. 2020, 11, 214. Atmosphere 2021. DOI

Hůnová I., Kurfürst P., Vlasáková L., Schreiberová M., Škáchová H. Atmospheric deposition of benzo[a]pyrene: developing a spatial pattern at a national scale. Atmosphere. 2022;13:712. doi: 10.3390/atmos13050712. 2022. DOI

Pavlíková I., Hladký D., Motyka O., Vergel K.N., Strelkova L.P., Shvetsova M.S. Characterization of PM10 sampled on the top of a former mining tower by the high-volume wind direction-dependent sampler using INNA. Atmosphere. 2020;12(1):29. doi: 10.3390/atmos12010029. 2021. DOI

Černikovský L., Krejčí B., Blažek Z., Volná V. Transboundary air-pollution transport in the Czech-polish border region between the cities of Ostrava and katowice. Cent. Eur. J. Publ. Health. 2016;24(Supplement):S45–S50. doi: 10.21101/cejph.a4532. https://cejph.szu.cz/pdfs/cjp/2016/88/07.pdf PubMed PMID: 28160537. PubMed DOI

Bitta J., Pavlíková I., Svozilík V., Jančík P. Air pollution dispersion modelling using spatial analyses. ISPRS Int. J. Geo-Inf. 2018;7(12):489. doi: 10.3390/ijgi7120489. 2018. DOI

Svozilíková Krakovská A., Svozilík V., Zinicovscaia I., Vergel K., Jančík P. Analysis of spatial data from moss biomonitoring in Czech–polish border. Atmosphere. 2020;11:1237. doi: 10.3390/atmos11111237. 2020. DOI

Volná V., Hladký D., Seibert R., Krejčí B. Transboundary air pollution transport of PM10 and benzo[a]pyrene in the Czech–polish border region. Atmosphere. 2022;13:341. doi: 10.3390/atmos13020341. 2022. DOI

AIR-SILESIA, Informační Systém Kvality Ovzduší V Oblasti Polsko-Českého Pohraničí Ve Slezském a Moravskoslezském Regionu (CZ.3.22/1.2.00/09.01610), 2010–2013 (The Information Air Quality System in the Czech-Polish Borderland of Moravian-Silesian Region).

Pánek T., Hradecký J. World Geomorphological Landscapes. Springer; Cham: 2016. Landscapes and landforms of the Czech republic. 422 s. ISBN 978-3-319-27536-9.

EC Council Decision 97/101/EC of 27 January 1997 establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States. Off. J. Eur. Commun. 1997 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31997D0101 OJ L 35, 5.2.1997, p. 14–22. EC. (Accessed 10 March 2024)

Larssen S., Sluyter R., Helmis C. Criteria for EUROAIRNET. The EEA air quality monitoring and information network. 1999. https://www.eea.europa.eu/publications/TEC12 Technical Report no. 12. EEA, Copenhagen.

Martinková E., Erban Kochergina Y.V., Šebek O., Seibert R., Chrastný V., Novák M., Štěpánová M., Čuřík J., Pacherová P., Přechová E., Veselovský F., Volná V., Hladký D., Petrash D.A., Komárek A. Winter-time pollution in Central European cities shifts the 208Pb/207Pb isotope ratio of atmospheric PM2.5 to higher values: implications for lead source apportionment. Atmos. Environ. 2023;310(2023) doi: 10.1016/j.atmosenv.2023.119941. ISSN 1352-2310. DOI

Lipina P., Řepka M., Kliegrová S., Tolasz R., Valeriánová A. Kontrola pravidelných meteorologických dat v databázi CLIDATA (Regular Meteorological Data Quality Control in the CLIDATA database) Meteorologické zprávy. 2016;69(2) https://www.chmi.cz/files/portal/docs/reditel/SIS/casmz/assets/2016/chmu_mz_2-16.pdf s. 41-48, ISSN 0026-1173. In Czech.

CLIDATA . 2024. Professional Climatological Database.www.clidata.cz

Tolasz R. Database processing of climatological data. Praha, Czech Hydrometerological Institute. 2009:66. https://www.researchgate.net/publication/236246651_Database_Processing_of_Climatological_Data ISBN 978-80-86690-68-1.

Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015;96:2059–2077. doi: 10.1175/BAMS-D-14-00110.1. DOI

Buzek F., Cejkova B., Jackova I., Seibert R., Curik J., Veselovsky F., Petrash D.A. Tracking sources of PM10 emissions and deposition in the industrial city of Ostrava, Czech Republic: a carbonaceous δ13C-based approach. Atmos. Environ. 2023;295 doi: 10.1016/j.atmosenv.2022.119556. DOI

Volná V., Blažek Z., Krejčí B. Assessment of air pollution by PM10 suspended particles in the urban agglomeration of central Europe in the period from 2001 to 2018. Urban Clim. 2021;39(2021) doi: 10.1016/j.uclim.2021.100959. DOI

CHMI . Czech Hydrometeorological Institute; Prague, Czech Republic: 2022. Air Pollution in the Czech Republic in 2021; Graphical Yearbook (Czech/English)www.chmi.cz/files/portal/docs/uoco/isko/grafroc/22groc/gr22cz/UKO_Rocenka_2022_v3.pdf 2022.

EC Proposal for a Directive of the European Parliament and of the Council on ambient air quality and cleaner air for Europe (recast) 2024. https://data.consilium.europa.eu/doc/document/ST-7335-2024-INIT/en/pdf

Norris G., Brown R. Duvall S., Bai S. U. S. EPA; Washington, DC, USA: 2014. Positive Matrix Factorization (PMF), Fundamentals and User Guide.

ARAMIS Air quality Research assessment and monitoring integrated system. 2024. www.projekt-aramis.cz In Czech.

Park S.K., O'Neill M., Stunder B., Vokonas P., Sparrow D., Koutrakis P., Schwartz J. Source location of air pollution and cardiac autonomic function: trajectory cluster analysis for exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2007 doi: 10.1038/sj.jes.7500552. PubMed DOI

Jorba O., Pérez C., Rocadenbosch F., Baldasano J.M. Cluster analysis of 4-day back trajectories arriving in the barcelona area, Spain, from 1997 to 2002. J. Appl. Meteorol. Climatol. 2004;43(6):887–901. doi: 10.1175/1520-0450(2004)043<0887:CAODBT>2.0.CO. 2. DOI

Dharmavaram S., Hopke P.K. A simple methodology for the determination of back trajectories. JAPCA. 1988;38(6):812–813. doi: 10.1080/08940630.1988.10466422. DOI

Waked A., Bourin A., Michoud V., Perdrix E., Alleman E.Z., Sauvage S., Delaunay T., Vermeesch S., Petit J./E., Riffault V. Investigation of the geographical origins of PM10 based on long, medium and short-range air mass back-trajectories impacting Northern France during the period 2009–2013. Atmos. Environ. 2018;193(November 2018):143–152. doi: 10.1016/j.atmosenv.2018.08.015. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...