• This record comes from PubMed

Denoising of dual-VENC PC-MRI with large high/low VENC ratios

. 2025 Jan ; 93 (1) : 353-368. [epub] 20240918

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
308522 Grantová Agentura, Univerzita Karlova
852544 HORIZON EUROPE European Research Council - CardioZoom

PURPOSE: Dual velocity encoding PC-MRI can produce spurious artifacts when using high ratios of velocity encoding values (VENCs), limiting its ability to generate high-quality images across a wide range of encoding velocities. This study aims to propose and compare dual-VENC correction methods for such artifacts. THEORY AND METHODS: Two denoising approaches based on spatiotemporal regularization are proposed and compared with a state-of-the-art method based on sign correction. Accuracy is assessed using simulated data from an aorta and brain aneurysm, as well as 8 two-dimensional (2D) PC-MRI ascending aorta datasets. Two temporal resolutions (30,60) ms and noise levels (9,12) dB are considered, with noise added to the complex magnetization. The error is evaluated with respect to the noise-free measurement in the synthetic case and to the unwrapped image without additional noise in the volunteer datasets. RESULTS: In all studied cases, the proposed methods are more accurate than the Sign Correction technique. Using simulated 2D+T data from the aorta (60 ms, 9 dB), the Dual-VENC (DV) error 0 . 82 ± 0 . 07 $$ 0.82\pm 0.07 $$ is reduced to: 0 . 66 ± 0 . 04 $$ 0.66\pm 0.04 $$ (Sign Correction); 0 . 34 ± 0 . 04 $$ 0.34\pm 0.04 $$ and 0 . 32 ± 0 . 04 $$ 0.32\pm 0.04 $$ (proposed techniques). The methods are found to be significantly different (p-value < 0 . 05 $$ <0.05 $$ ). Importantly, brain aneurysm data revealed that the Sign Correction method is not suitable, as it increases error when the flow is not unidirectional. All three methods improve the accuracy of in vivo data. CONCLUSION: The newly proposed methods outperform the Sign Correction method in improving dual-VENC PC-MRI images. Among them, the approach based on temporal differences has shown the highest accuracy.

See more in PubMed

Markl M, Schnell S, Wu C, et al. Advanced flow MRI: emerging techniques and applications. Clin Radiol. 2016;71:779‐795. doi:10.1016/j.crad.2016.01.011

Azarine A, Garçon P, Stansal A, et al. Four‐dimensional flow MRI: principles and cardiovascular applications. Radiographics. 2019;39:632‐648. doi:10.1148/rg.2019180091

Zhuang B, Sirajuddin A, Zhao S, Lu M. The role of 4D flow MRI for clinical applications in cardiovascular disease: current status and future perspectives. Quant Imaging Med Surg. 2021;11:4193‐4210. doi:10.21037/qims‐20‐1234

Nayak KS, Nielsen J‐F, Bernstein MA, et al. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson. 2015;17:71. doi:10.1186/s12968‐015‐0172‐7

Cebral JR, Putman CM, Alley MT, Hope T, Bammer R, Calamante F. Hemodynamics in normal cerebral arteries: qualitative comparison of 4D phase‐contrast magnetic resonance and image‐based computational fluid dynamics. Journal of Engineering Mathematics. 2009;64:367‐378. doi:10.1007/s10665‐009‐9266‐2

Bissell MM, Raimondi F, Ait AL, et al. 4D flow cardiovascular magnetic resonance consensus statement: 2023 update. J Cardiovasc Magn Reson. 2023;25:40. doi:10.1186/s12968‐023‐00942‐z

Lee AT, Bruce PG, Pelc NJ. Three‐point phase‐contrast velocity measurements with increased velocity‐to‐noise ratio. Magn Reson Med. 1995;33:122‐126. doi:10.1002/mrm.1910330119

Nett EJ, Johnson KM, Frydrychowicz A, et al. Four‐dimensional phase contrast MRI with accelerated dual velocity encoding. J Magn Reson Imaging. 2012;35:1462‐1471. doi:10.1002/jmri.23588

Ha H, Kim GB, Kweon J, et al. Multi‐VENC acquisition of four‐dimensional phase‐contrast MRI to improve precision of velocity field measurement. Magn Reson Med. 2016;75:1909‐1919. doi:10.1002/mrm.25715

Callaghan FM, Kozor R, Sherrah AG, et al. Use of multi‐velocity encoding 4D flow MRI to improve quantification of flow patterns in the aorta. J Magn Reson Imaging. 2016;43:352‐363. doi:10.1002/jmri.24991

Schnell S, Ansari SA, Wu C, et al. Accelerated dual‐venc 4D flow MRI for neurovascular applications. J Magn Reson Imaging. 2017;46:102‐114. doi:10.1002/jmri.25595

Carrillo H, Osses A, Uribe S, Bertoglio C. Optimal dual‐VENC unwrapping in phase‐contrast MRI. IEEE Trans Med Imaging. 2019;38:1263‐1270. doi:10.1109/tmi.2018.2882553

Herthum H, Carrillo H, Osses A, Uribe S, Sack I, Bertoglio C. Multiple motion encoding in phase‐contrast MRI: a general theory and application to elastography imaging. Med Image Anal. 2022;78:102416. doi:10.1016/j.media.2022.102416

Franco P, Ma L, Schnell S, et al. Comparison of improved unidirectional dual velocity‐encoding MRI methods. J Magn Reson Imaging. 2023;57:763‐773. doi:10.1002/jmri.28305

Löcke M, Labra JEG, Franco P, Uribe S, Bertoglio C. A comparison of phase unwrapping methods in velocity‐encoded MRI for aortic flows. Magn Reson Med. 2023;90:2102‐2115. doi:10.1002/mrm.29767

Alnæs M, Blechta J, Hake J, et al. The FEniCS project version 1.5. Arch Numer Softw. 2015;3:9‐23.

Berg P, Roloff C, Beuing O, et al. The computational fluid dynamics rupture challenge 2013—phase II: variability of hemodynamic simulations in two intracranial aneurysms. J Biomech Eng. 2015;137:121008.

Bruneau C‐H, Fabrie P. New efficient boundary conditions for incompressible Navier‐stokes equations: a well‐posedness result. ESAIM Math Model Numer Anal. 1996;30:815‐840. doi:10.1051/m2an/1996300708151

Braack M, Mucha PB. Directional do‐nothing condition for the Navier‐stokes equations. J Comput Math. 2014;32:507‐521. doi:10.4208/jcm.1405‐m4347

Lee G, Gommers R, Waselewski F, Wohlfahrt K, O'Leary A. PyWavelets: a python package for wavelet analysis. J Open Source Softw. 2019;4:1237. doi:10.21105/joss.01237

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...