Biodegradable WE43 Mg alloy/hydroxyapatite interpenetrating phase composites with reduced hydrogen evolution

. 2024 Dec ; 42 () : 519-530. [epub] 20240911

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39308546

Biodegradable magnesium implants offer a solution for bone repair without the need for implant removal. However, concerns persist regarding peri-implant gas accumulation, which has limited their widespread clinical acceptance. Consequently, there is a need to minimise the mass of magnesium to reduce the total volume of gas generated around the implants. Incorporating porosity is a direct approach to reducing the mass of the implants, but it also decreases the strength and degradation resistance. This study demonstrates that the infiltration of a calcium phosphate cement into an additively manufactured WE43 Mg alloy scaffold with 75 % porosity, followed by hydrothermal treatment, yields biodegradable magnesium/hydroxyapatite interpenetrating phase composites that generate an order of magnitude less hydrogen gas during degradation than WE43 scaffolds. The enhanced degradation resistance results from magnesium passivation, allowing osteoblast proliferation in indirect contact with composites. Additionally, the composites exhibit a compressive strength 1.8 times greater than that of the scaffolds, falling within the upper range of the compressive strength of cancellous bone. These results emphasise the potential of the new biodegradable interpenetrating phase composites for the fabrication of temporary osteosynthesis devices. Optimizing cement hardening and magnesium passivation during hydrothermal processing is crucial for achieving both high compressive strength and low degradation rate.

Zobrazit více v PubMed

Waizy H., Diekmann J., Weizbauer A., Reifenrath J., Bartsch I., Neubert V., Schavan R., Windhagen H. In vivo study of a biodegradable orthopedic screw (MgYREZr-alloy) in a rabbit model for up to 12 months. J. Biomater. Appl. 2014;28(5):667–675. doi: 10.1177/0885328212472215. PubMed DOI

Plaass C., Ettinger S., Sonnow L., Koenneker S., Noll Y., Weizbauer A., Reifenrath J., Claassen L., Daniilidis K., Stukenborg-Colsman C., Windhagen H. Early results using a biodegradable magnesium screw for modified chevron osteotomies. J. Orthop. Res. 2016;34(12):2207–2214. doi: 10.1002/jor.23241. PubMed DOI

Plaass C., Von Falck C., Ettinger S., Sonnow L., Calderone F. Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies – 3 year results of a randomized clinical trial. J. Orthop. Sci. 2018;23(2):321–327. doi: 10.1016/j.jos.2017.11.005. PubMed DOI

Gu X.N., Zhou W.R., Zheng Y.F., Cheng Y., Wei S.C., Zhong S.P., Xi T.F., Chen L.J. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - in simulated body fluid. Acta Biomater. 2010;6(12):4605–4613. doi: 10.1016/j.actbio.2010.07.026. PubMed DOI

Socjusz-Podosek M., Lityńska L. Effect of yttrium on structure and mechanical properties of Mg alloys. Mater. Chem. Phys. 2003;80:472–475. doi: 10.1016/S0254-0584(02)00549-7. DOI

Liu D., Ding Y., Guo T., Qin X., Guo C., Yu S., et al. Influence of fine-grain and solid-solution strengthening on mechanical properties and in vitro degradation of WE43 alloy. Biomed. Mater. 2014;9 doi: 10.1088/1748-6041/9/1/015014. PubMed DOI

Davenport A., Padovani C., Connolly B., Stevens N., Beale T., Groso A., Stampanoni M. Synchrotron X-ray microtomography study of the role of Y in corrosion of magnesium alloy WE43. Electrochem. Solid State Lett. 2007;10(2):C5–C8. 10.10.1149/1.2400727.

Li N., Zheng Y.F. Novel magnesium alloys developed for biomedical application: a review. J. Mater. Sci. Technol. 2013;29(6):489–502. doi: 10.1016/j.jmst.2013.02.005. DOI

Torroni A., Xiang C., Witek L., Rodriguez E.D., Coelho P.G., Gupta N. Biocompatibility and degradation properties of WE43 Mg alloys with and without heat treatment: in vivo evaluation and comparison in a cranial bone sheep model. J. Cranio-Maxillo-Fac. Surg. 2017;45(12):2075–2083. doi: 10.1016/j.jcms.2017.09.016. PubMed DOI

Witte F., Kaese V., Haferkamp H., Switzer E., Meyer-Lindenberg A., Wirth C.J., Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557–3563. doi: 10.1016/j.biomaterials.2004.09.049. PubMed DOI

Witte F., Fischer J., Nellesen J., Crostack H.-A., Kaese V., Pisch A. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–1018. doi: 10.1016/j.biomaterials.2005.07.037. PubMed DOI

Kuhlmann J., Bartsch I., Willbold E., Schuchardt S., Holz O., Hort N., Höche D., Heineman W.R., Witte F. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 2013;9(10):8714–8721. doi: 10.1016/j.actbio.2012.10.008. PubMed DOI

Sun Y., Helmholz H., Willumeit-Römer R. Peri‐implant gas accumulation in response to magnesium‐based musculoskeletal biomaterials: reframing current evidence for preclinical research and clinical evaluation. J. Magnesium Alloys. 2024;12(1):59–71. doi: 10.1016/j.jma.2024.01.023. DOI

Gaalen K., Quinn C., Weiler M., Gremse F., et al. Predicting localised corrosion and mechanical performance of a PEO surface modified rare earth magnesium alloy for implant use through in-silico modelling. Bioact. Mater. 2023;26:437–451. doi: 10.1016/j.bioactmat.2023.03.009. PubMed DOI PMC

Wang C., Liu J., Min S., Liu Y., Liu B., Hu Y., Wang Z., Mao F., Wang C., Ma X., Wen P., Zheng Y., Tian Y. The effect of pore size on the mechanical properties, biodegradation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: an in vitro and in vivo study. Bioact. Mater. 2023;6(28):537–548. doi: 10.1016/j.bioactmat.2023.06.009. PubMed DOI PMC

Fiume E., Magnaterra G., Rahdar A., Verné E., Baino F. Hydroxyapatite for biomedical applications: a short overview. Ceramics. 2021;4(4):542–563. doi: 10.3390/ceramics4040039. DOI

Witte F., Feyerabend F., Maier P., Fischer J., Störmer M., Blawert C., Dietzel W., Hort N. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials. 2007;28(13):2163–2174. doi: 10.1016/j.biomaterials.2006.12.027. PubMed DOI

Khanra A.K., Jung H.C., Yu S.H., Hong K.S., Shin K.S. Microstructure and mechanical properties of Mg-HAP composites. Bull. Mater. Sci. 2010;33:43–47. doi: 10.1007/s12034-010-0006-z. DOI

Wang X., Dong L.H., Li J.T., Li X.L., Ma X.L., Zheng Y.F. Microstructure, mechanical property and corrosion behavior of interpenetrating (HA+β-TCP)/MgCa composite fabricated by suction casting. Mater. Sci. Eng., C. 2013;33(7):4266–4273. doi: 10.1016/j.msec.2013.06.018. PubMed DOI

Gu X.N., Wang X., Li N., Li L., Zheng Y.F., Miao X. Microstructure and characteristics of the metal-ceramic composite (MgCa-HA/TCP) fabricated by liquid metal infiltration. J. Biomed. Mater. Res., Part B. 2011;99B(1):127–134. doi: 10.1002/jbm.b.31879. PubMed DOI

Wang X., Li J.T., Xie M.Y., Qu L.J., Zhang P., Li X.L. Structure, mechanical property and corrosion behaviors of (HA+β-TCP)/Mg-5Sn composite with interpenetrating networks. Mater. Sci. Eng., C. 2015;1(56):386–392. doi: 10.1016/j.msec.2015.06.047. PubMed DOI

Chen B., Yin K., Lu T.-F., Sun B.-Y., Dong Q., Lu C., Li Z.-C. AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J. Mater. Sci. Technol. 2016;32:858–864. doi: 10.1016/j.jmst.2016.06.010. DOI

Casas-Luna M., Montufar E.B., Hort N., Díaz-de-la-torre S., Méndez-García J.C., Vištejnová L., Brinek A., Danhel A., Dvořák K., Kaiser J., Čelko L. Degradable magnesium-hydroxyapatite interpenetrating phase composites processed by current assisted metal infiltration in additive-manufactured porous preforms. J. Magnesium Alloys. 2022;10(12):3641–3656. doi: 10.1016/j.jma.2022.07.019. DOI

Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury. 2000;31(Suppl 4):37–47. doi: 10.1016/s0020-1383(00)80022-4. PubMed DOI

Friedman C.D., Costantino P.D., Takagi S., Chow L.C. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction. J. Biomed. Mater. Res. 1998;43(4):428–432. doi: 10.1002/(sici)1097-4636(199824)43:4<428::aid-jbm10>3.0.co;2-0. PubMed DOI

Ginebra M.P., Fernández E., De Maeyer E.A., Verbeeck R.M., Boltong M.G., Ginebra J., Driessens F.C., Planell J.A. Setting reaction and hardening of an apatitic calcium phosphate cement. J. Dent. Res. 1997;76(4):905–912. doi: 10.1177/00220345970760041201. PubMed DOI

Durucan C., Brown P.W. alpha-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000;11(6):365–371. doi: 10.1023/a:1008934024440. PubMed DOI

Barba A., Diez-Escudero A., Maazouz Y., Rappe K., et al. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture. ACS Appl. Mater. Interfaces. 2017;9(48):41722–41736. doi: 10.1021/acsami.7b14175. PubMed DOI

Montufar E.B., Maazouz Y., Ginebra M.P. Relevance of the setting reaction to the injectability of tricalcium phosphate pastes. Acta Biomater. 2013;9(4):6188–6198. doi: 10.1016/j.actbio.2012.11.028. PubMed DOI

Gbureck U., Spatz K., Thull R., Barralet J.E. Rheological enhancement of mechanically activated alpha-tricalcium phosphate cements. J. Biomed. Mater. Res. B Appl. Biomater. 2005;73(1):1–6. doi: 10.1002/jbm.b.30148. PubMed DOI

Maazouz Y., Montufar E.B., Malbert J., Espanol M., Ginebra M.P. Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes. Acta Biomater. 2017;49:563–574. doi: 10.1016/j.actbio.2016.11.043. PubMed DOI

Raymond S., Maazouz Y., Montufar E.B., Perez R.A., González B., Konka J., Kaiser J., Ginebra M.P. Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks. Acta Biomater. 2018;75:451–462. doi: 10.1016/j.actbio.2018.05.042. PubMed DOI

Shachaf Y., Gonen-Wadmany M., Seliktar D. The biocompatibility of PluronicF127 fibrinogen-based hydrogels. Biomaterials. 2010;31(10):2836–2847. doi: 10.1016/j.biomaterials.2009.12.050. PubMed DOI

Escobar-Chávez J.J., López-Cervantes M., Naïk A., Kalia Y.N., Quintanar-Guerrero D., Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J. Pharm. Pharmaceut. Sci. 2006;9(3):339–358. PubMed

Lei H.Y., Yue R., Xu Z.J., Wang Q.H. Parametric design of Voronoi-based lattice porous structures. Mater. Des. 2020;191 doi: 10.1016/j.matdes.2020.108607. DOI

Kashimbetova A., Slámečka K., Casas-Luna M., Oliver-Urrutia C., Ravaszová S., Dvořák K., Čelko L., Montufar E.B. Implications of unconventional setting conditions on the mechanical strength of synthetic bone grafts produced with self-hardening calcium phosphate pastes. Ceram. Int. 2022;48(5):6225–6235. doi: 10.1016/j.ceramint.2021.11.163. DOI

Shi Z., Liu M., Atrens A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corrosion Sci. 2010;9(2):579–588. doi: 10.1016/j.corsci.2009.10.016. DOI

Lu T., Sun Z., Jia C., Ren J., Li J., Ma Z., Zhang J., Li J., Zhang T., Zang Q., Yang B., Yang P., Wang D., Li H., Qin J., He X. Roles of irregularity of pore morphology in osteogenesis of Voronoi scaffolds: from the perspectives of MSC adhesion and mechano-regulated osteoblast differentiation. J. Biomech. 2023;151(5):6225–6235. doi: 10.1016/j.jbiomech.2023.111542. PubMed DOI

Liang H., Yang Y., Xie D., Li L., Mao N., Wang C., Tian Z., Jiang Q., Shen L. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J. Mater. Sci. Technol. 2019;35(7):1284–1297. doi: 10.1016/j.jmst.2019.01.012. DOI

Yue X., Shang J., Zhang M., Hur B., Ma X. Additive manufacturing of high porosity magnesium scaffolds with lattice structure and random structure: a study on laser powder bed fusion manufacturing for biomedical implants. Mater. Sci. Eng. A. 2022;859(1):144167. doi: 10.1016/j.msea.2022.144167. DOI

Araya M., Jaskari M., Rautio T., Guillén T., Järvenpää A. Assessing the compressive and tensile properties of TPMS-Gyroid and stochastic Ti64 lattice structures: a study on laser powder bed fusion manufacturing for biomedical implants. J. Sci.: Advanced Materials and Devices. 2024;9(1):100663. doi: 10.1016/j.jsamd.2023.100663. DOI

Liu J., Liu B., Min S., Yin B., Peng B., Yu Z., Wang C., Ma X., Wen P., Tian Y., Zheng Y. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: process optimization, in vitro and in vivo investigation. Bioact. Mater. 2022;24(16):301–319. doi: 10.1016/j.bioactmat.2022.02.020. PubMed DOI PMC

Sanchez A.H.M., Luthringer B.J.C., Feyerabend F., Willumeit R. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review. Acta Biomater. 2015;13:16–31. doi: 10.1016/j.actbio.2014.11.048. PubMed DOI

Zhang X., Yuan G., Mao L., Niu J., Ding W. Biocorrosion properties of as-extruded Mg–Nd–Zn–Zr alloy compared with commercial AZ31 and WE43 alloys. Mater. Lett. 2012;66(1):209–211. doi: 10.1016/j.matlet.2011.08.079. DOI

Sotomayor O.E., Tippur H.V. Role of cell regularity and relative density on elastoplastic compression response of 3-D open-cell foam core sandwich structure generated using Voronoi diagrams. Acta Mater. 2014;78:301–313. doi: 10.1016/j.actamat.2014.06.051. DOI

Li J., Yang Y., Sun Z., Peng K., Liu K., Xu P., Li J., Wei X., He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: biomechanics, simulation analysis, and osteogenesis. Materials Today Bio. 2024;24:100934. doi: 10.1016/j.mtbio.2023.100934. PubMed DOI PMC

Bär F., Berger L., Jauer L., Kurtuldu G., Schäublin R., Schleifenbaum J.H., Löffler J.F. Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomater. 2019;98:36–49. doi: 10.1016/j.actbio.2019.05.056. PubMed DOI

Hyer H., Zhou L., Benson G., McWilliams B., Cho K., Sohn Y. Additive manufacturing of dense WE43 Mg alloy by laser powder bed fusion. Addit. Manuf. 2020;33 doi: 10.1016/j.addma.2020.101123. DOI

Suchy J., Horynová M., Klakurková L., Palousek D., Koutny D., Čelko L. Effect of laser parameters on processing of biodegradable magnesium alloy WE43 via selective laser melting method. Materials. 2020;13(11):2623. doi: 10.3390/ma13112623. PubMed DOI PMC

Esmaily M., Zeng Z., Mortazavi A.N., Gullino A., Choudhary S., Derra T., Benn F., D'Elia F., Müther M., Thomas S., Huang A., Allanore A., Kopp A., Birbilis N. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting. Addit. Manuf. 2020;35 doi: 10.1016/j.addma.2020.101321. DOI

Zhu Y., Zhao Q., Zhang Y.-H., Wu G. Hydrothermal synthesis of protective coating on magnesium alloy using de-ionized water. Surf. Coating. Technol. 2012;206(11–12):2961–2966. doi: 10.1016/j.surfcoat.2011.12.029. DOI

Iqbal F., Ali A., Naveed M., Ikram F., Fatima H. Hydrothermal deposition of high strength biocompatible magnesium phosphate coating through in situ conversion of AZ91D-3Ca magnesium substrate. Surf. Coating. Technol. 2023;457:129301. doi: 10.1016/j.surfcoat.2023.129301. DOI

Yang Y., He C., E D., Yang W., Qi F., Xie D., Shen L., Peng S., Shuai C. Mg bone implant: features, developments and perspectives. Mater. Des. 2019;185 doi: 10.1016/j.matdes.2019.108259. DOI

Munir K., Biesiekierski A., Wen C., Li Y. 2021. pp. 189–228. (Biodegradable Alloys. Structural Biomaterials). DOI

Benn F., Kröger N., Zinser M., van Gaalen K., Vaughan T.J., Yan M., Smeets R., Bibiza E., Malinov S., Buchanan F., Kopp A. Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. Mater. Sci. Eng. C. 2021;124:112016. doi: 10.1016/j.msec.2021.112016. PubMed DOI

Ozturk S.S., Palsson B.O. Effect of medium osmolarity on hybridoma growth, metabolism, and antibody production. Biotechnol. Bioeng. 1991;37(10):989–993. doi: 10.1002/bit.260371015. PubMed DOI

Freshney R.I. John Wiley & Sons, Inc.; 2010. Culture of Animal Cells. DOI

Sadowska J.M., Guillem-Marti J., Montufar E.B., Espanol M., Ginebra M.P. Biomimetic versus sintered calcium phosphates: the in vitro behavior of osteoblasts and mesenchymal stem cells. Tissue Eng. 2017;23(23–24):1297–1309. doi: 10.1089/ten.TEA.2016.0406. PubMed DOI

Liu Y., Chen B., Liu Z., Zhang Z., Ritchie R.O. Bioinspired interpenetrating-phase metal composites. Prog. Mater. Sci. 2024;144:101281. doi: 10.1016/j.pmatsci.2024.101281. DOI

Khorashadizade F., Abazari S., Rajabi M., Bakhsheshi-Rad H., Ismail A., Sharif S., Ramakrishna S., Berto F. Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties. J. Mater. Res. Technol. 2021;15:6034–6066. doi: 10.1016/j.jmrt.2021.10.141. DOI

Gbureck U., Barralet J.E., Spatz K., Grover L.M., Thull R. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials. 2004;25(11):2187–2195. doi: 10.1016/j.biomaterials.2003.08.066. PubMed DOI

Ginebra M.P., Boltong M.G., Fernández E., et al. Effect of various additives and temperature on some properties of an apatitic calcium phosphate cement. J. Mater. Sci. Mater. Med. 1995;6:612–616. doi: 10.1007/BF00121286. DOI

Fernández E., Boltong M.G., Ginebra M.P., Bermúdez O., Driessens F.C.M., Planell J.A. Common ion effect on some calcium phosphate cements. Clin. Mater. 1994;16(2):99–103. doi: 10.1016/0267-6605(94)90103-1. PubMed DOI

O'Hara R.M., Dunne N.J., Orr J.F., et al. Optimisation of the mechanical and handling properties of an injectable calcium phosphate cement. J. Mater. Sci. Mater. Med. 2010;21:2299–2305. doi: 10.1007/s10856-009-3977-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...