Effect of Laser Parameters on Processing of Biodegradable Magnesium Alloy WE43 via Selective Laser Melting Method
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FV20232
Ministerstvo Průmyslu a Obchodu
FSI-S-17-4144
Vysoké Učení Technické v Brně
PubMed
32526865
PubMed Central
PMC7321597
DOI
10.3390/ma13112623
PII: ma13112623
Knihovny.cz E-resources
- Keywords
- 3D printing, Mg-alloy, additive manufacturing, single track, surface quality, thin wall,
- Publication type
- Journal Article MeSH
The global aim of the theme of magnesium alloy processing by the selective laser melting technology is to enable printing of replacements into the human body. By combining the advantages of WE43 magnesium alloy and additive manufacturing, it is possible to print support structures that have very similar properties to human bones. However, printing magnesium alloy parts is very difficult, and the printing strategies are still under development. Knowledge of weld deposit behaviour is needed to design a complex printing strategy and still missing. The main aim of the manuscript is the find a stable process window and identify the dependence of the weld deposit shape and properties on the laser power and scanning speed. The range of the tested parameters was 100-400 W and 100-800 mm/s for laser power and scanning speed. The profilometry and light microscopy were used to verify the continuity and shape evaluation. The microhardness and EDX analysis were used for the detailed view of the weld deposit. The manuscript specifies the weld deposit dimensions, their changes depending on laser power and scanning speed, and the continuity of the weld tracks. The stable weld deposits are made by the energy density of 5.5-12 J/mm2. Thin walls were also created by layering welds to determine the surface roughness scattering (Ra 35-60) for various settings of laser power and scanning speed.
See more in PubMed
Cohen J. Current concepts review. Corrosion of metal orthopaedic implants. J. Bone Jt. Surg. Am. 1998;80:1554. doi: 10.2106/00004623-199810000-00027. PubMed DOI
Milošev I., Pišot V., Campbell P. Serum levels of cobalt and chromium in patients with Sikomet metal-metal total hip replacements. J. Orthop. Res. 2005;23:526–535. doi: 10.1016/j.orthres.2004.12.007. PubMed DOI
Niki Y., Matsumoto H., Suda Y., Otani T., Fujikawa K., Toyama Y., Hisamori N., Nozue A. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials. 2003;24:1447–1457. doi: 10.1016/S0142-9612(02)00531-8. PubMed DOI
Granchi D., Ciapetti G., Stea S., Savarino L., Filippini F., Sudanese A., Zinghi G., Montanaro L. Cytokine release in mononuclear cells of patients with Co-Cr hip prosthesis. Biomaterials. 1999;20:1079–1086. doi: 10.1016/S0142-9612(99)00004-6. PubMed DOI
Wang J.Y., Wicklund B.H., Gustilo R.B., Tsukayama D.T. Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials. 1996;17:2233–2240. doi: 10.1016/0142-9612(96)00072-5. PubMed DOI
Nagels J., Stokdijk M., Rozing P.M. Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elb. Surg. 2003;12:35–39. doi: 10.1067/mse.2003.22. PubMed DOI
Saris N.E.L., Mervaala E., Karppanen H., Khawaja J.A., Lewenstam A. Magnesium: An update on physiological, clinical and analytical aspects. Clin. Chim. Acta. 2000;294:1–26. doi: 10.1016/S0009-8981(99)00258-2. PubMed DOI
Okuma T. Magnesium and bone strength. Nutrition. 2001;17:679–680. doi: 10.1016/S0899-9007(01)00551-2. PubMed DOI
Hartwig A. Role of magnesium in genomic stability. Micronutr. Genom. STable. 2001;475:113–121. doi: 10.1016/S0027-5107(01)00074-4. PubMed DOI
Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 2006;27:1728–1734. doi: 10.1016/j.biomaterials.2005.10.003. PubMed DOI
Revell P.A., Damien E., Zhang X.S., Evans P., Howlett C.R. The Effect of Magnesium Ions on Bone Bonding to Hydroxyapatite Coating on Titanium Alloy Implants. Key Eng. Mater. 2004;254–256:447–450. doi: 10.4028/www.scientific.net/KEM.254-256.447. DOI
Zreiqat H., Howlett C.R., Zannettino A., Evans P., Schulze-Tanzil G., Knabe C., Shakibaei M. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 2002;62:175–184. doi: 10.1002/jbm.10270. PubMed DOI
Yamasaki Y., Yoshida Y., Okazaki M., Shimazu A., Kubo T., Akagawa Y., Uchida T. Action of FGMgCO3Ap-collagen composite in promoting bone formation. Biomaterials. 2003;24:4913–4920. doi: 10.1016/S0142-9612(03)00414-9. PubMed DOI
Levorova J., Duskova J., Drahos M., Vrbova R., Vojtech D., Kubasek J., Bartos M., Dugova L., Ulmann D., Foltan R. In vivo study on biodegradable magnesium alloys: Bone healing around WE43 screws. J. Biomater. Appl. 2018;32:886–895. doi: 10.1177/0885328217743321. PubMed DOI
Witte F., Kaese V., Haferkamp H., Switzer E., Meyer-Lindenberg A., Wirth C.J., Windhagen H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–3563. doi: 10.1016/j.biomaterials.2004.09.049. PubMed DOI
Li N., Guo C., Wu Y.H., Zheng Y.F., Ruan L.Q. Comparative study on corrosion behaviour of pure Mg and WE43 alloy in static, stirring and flowing Hank’s solution. Corros. Eng. Sci. Technol. 2012;47:346–351. doi: 10.1179/1743278212Y.0000000006. DOI
Ge S., Wang Y., Tian J., Lei D., Yu Q., Wang G. An in vitro study on the biocompatibility of WE magnesium alloys. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016;104:482–487. doi: 10.1002/jbm.b.33388. PubMed DOI
Kubásek J., Vojtěch D., Jablonská E., Pospíšilová I., Lipov J., Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys. Mater. Sci. Eng. C. 2016;58:24–35. doi: 10.1016/j.msec.2015.08.015. PubMed DOI
Riza S.H., Masood S.H., Wen C. Comprehensive Materials Processing. Elsevier; Amsterdam, The Netherlands: 2014. Laser-Assisted Additive Manufacturing for Metallic Biomedical Scaffolds; pp. 285–301.
Gu D. Laser Additive Manufacturing of High-Performance Materials. Springer; Berlin/Heidelberg, Germany: 2015. pp. 1–311. DOI
Yap C.Y., Chua C.K., Dong Z.L., Liu Z.H., Zhang D.Q., Loh L.E., Sing S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015;2 doi: 10.1063/1.4935926. DOI
Ng C.C., Savalani M.M., Man H.C., Gibson I. Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys. Prototyp. 2010;5:13–19. doi: 10.1080/17452751003718629. DOI
Chung Ng C., Savalani M., Chung Man H. Fabrication of magnesium using selective laser melting technique. Rapid Prototyp. J. 2011;17:479–490. doi: 10.1108/13552541111184206. DOI
Ng C.C., Savalani M.M., Lau M.L., Man H.C. Microstructure and mechanical properties of selective laser melted magnesium. Appl. Surf. Sci. 2011;257:7447–7454. doi: 10.1016/j.apsusc.2011.03.004. DOI
Wei K., Gao M., Wang Z., Zeng X. Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater. Sci. Eng. A. 2014;611:212–222. doi: 10.1016/j.msea.2014.05.092. DOI
Hu D., Wang Y., Zhang D., Hao L., Jiang J., Li Z., Chen Y. Experimental Investigation on Selective Laser Melting of Bulk Net-Shape Pure Magnesium. Mater. Manuf. Process. 2015;30:1298–1304. doi: 10.1080/10426914.2015.1025963. DOI
Taltavull C., Torres B., López A.J., Rodrigo P., Otero E., Rams J. Selective laser surface melting of a magnesium-aluminium alloy. Mater. Lett. 2012;85:98–101. doi: 10.1016/j.matlet.2012.07.004. DOI
Schmid D., Renza J., Zaeh M.F., Glasschroeder J. Process influences on laser-beam melting of the magnesium alloy AZ91. Phys. Procedia. 2016;83:927–936. doi: 10.1016/j.phpro.2016.08.097. DOI
Pawlak A., Rosienkiewicz M., Chlebus E. Design of experiments approach in AZ31 powder selective laser melting process optimization. Arch. Civ. Mech. Eng. 2017;17:9–18. doi: 10.1016/j.acme.2016.07.007. DOI
Tandon R., Palmer T., Gieseke M., Noelke C. Additive Manufacturing of Magnesium Alloy Powders: Investigations Into Process Development Using Elektron®MAP+43 Via Laser Powder Bed Fusion and Directed Energy Deposition. Euro PM2016. 2016;91:4–9.
Gangireddy S., Gwalani B., Liu K., Faierson E.J., Mishra R.S. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy. Addit. Manuf. 2019;26:53–64. doi: 10.1016/j.addma.2018.12.015. DOI
Zumdick N.A., Jauer L., Kersting L.C., Kutz T.N., Schleifenbaum J.H., Zander D. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater. Charact. 2019;147:384–397. doi: 10.1016/j.matchar.2018.11.011. DOI
Jauer L., Jülich B., Voshage M., Meiners W. Selective Laser Melting of magnesium alloys. 2015;30:824682.
Li Y., Zhou J., Pavanram P., Leeflang M.A., Fockaert L.I., Pouran B., Tümer N., Schröder K.U., Mol J.M.C., Weinans H., et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378–392. doi: 10.1016/j.actbio.2017.12.008. PubMed DOI
Jauer L., Meiners W., Vervoort S., Gayer C., Zumdick N.A., Zander D. Selective laser melting of magnesium alloys; Proceedings of the World PM 2016 Congress and Exhibition; Hamburg, Germany. 9–13 October 2016; Shrewsbury, UK: European Powder Metallurgy Association (EPMA); 2016.
Hyer H., Zhou L., Benson G., McWilliams B., Cho K., Sohn Y. Additive Manufacturing of Dense WE43 Mg Alloy by Laser Powder Bed Fusion. Addit. Manuf. 2020;33:101123. doi: 10.1016/j.addma.2020.101123. DOI
Zhang W.N., Wang L.Z., Feng Z.X., Chen Y.M. Research progress on selective laser melting (SLM) of magnesium alloys: A review. Optik (Stuttg) 2020;207:163842. doi: 10.1016/j.ijleo.2019.163842. DOI
Li Y., Jahr H., Zhang X.Y., Leeflang M.A., Li W., Pouran B., Tichelaar F.D., Weinans H., Zhou J., Zadpoor A.A. Biodegradation-affected fatigue behavior of additively manufactured porous magnesium. Addit. Manuf. 2019;28:299–311. doi: 10.1016/j.addma.2019.05.013. DOI
Król M., Taski T. Surface quality research for selective laser melting of TI-6AL-4V alloy. Arch. Metall. Mater. 2016;61:945–950. doi: 10.1515/amm-2016-0213. DOI
Balc N., Cosma S.C., Kessler J., Mager V. Research on Improving the Outer Surface Quality of the Parts Made by SLM. Appl. Mech. Mater. 2015;808:199–204. doi: 10.4028/www.scientific.net/AMM.808.199. DOI
Majeed A., Lv J., Zhang Y., Muzamil M., Waqas A., Shamim K., Qureshi M.E., Zafar F. An investigation into the influence of processing parameters on the surface quality of AlSi10Mg parts by SLM process; Proceedings of the 2019 16th International Bhurban Conference on Applied Sciences and Technology IBCAST 2019; Islamabad, Pakistan. 8–12 January 2019; pp. 143–147. DOI
Savalani M.M., Pizarro J.M. Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium. Rapid Prototyp. J. 2016;22:115–122. doi: 10.1108/RPJ-07-2013-0076. DOI
Guo Y., Jia L., Kong B., Wang N., Zhang H. Single track and single layer formation in selective laser melting of niobium solid solution alloy. Chin. J. Aeronaut. 2018;31:860–866. doi: 10.1016/j.cja.2017.08.019. DOI
Kempen K., Thijs L., Yasa E., Badrossamay M., Verheecke W., Kruth J.-P. Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg; Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference; Sarasota, FL, USA. 7–17 April 2011; pp. 484–495.
Li R., Liu J., Shi Y., Wang L., Jiang W. Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. 2012;59:1025–1035. doi: 10.1007/s00170-011-3566-1. DOI
Czerwinski F. Controlling the ignition and flammability of magnesium for aerospace applications. Corros. Sci. 2014;86:1–16. doi: 10.1016/j.corsci.2014.04.047. DOI
Tekumalla S., Gupta M. An insight into ignition factors and mechanisms of magnesium based materials: A review. Mater. Des. 2017;113:84–98. doi: 10.1016/j.matdes.2016.09.103. DOI
Zhan X., Chen J., Liu J., Wei Y., Zhou J., Meng Y. Microstructure and magnesium burning loss behavior of AA6061 electron beam welding joints. Mater. Des. 2016;99:449–458. doi: 10.1016/j.matdes.2016.03.058. DOI
Sercombe T.B., Li X., Sercombe T.B., Li X. Selective laser melting of aluminium and aluminium metal matrix composites: Review. Mater. Technol. 2016;7857 doi: 10.1179/1753555715Y.0000000078. DOI
Zhang B., Liao H., Coddet C. Effects of processing parameters on properties of selective laser melting Mg–9%Al powder mixture. Mater. Des. 2012;34:753–758. doi: 10.1016/j.matdes.2011.06.061. DOI
Wei K., Wang Z., Zeng X. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg-Zn-Zr components. Mater. Lett. 2015;156:187–190. doi: 10.1016/j.matlet.2015.05.074. DOI
Kruth J., Badrossamay M., Yasa E., Deckers J., Thijs L., Humbeeck J. Van Part and material properties in selective laser melting of metals; Proceedings of the 16th International Symposium on Electromachining; Shanghai, China. 19–23 April 2010; pp. 1–12.
Pinkerton A.J. Laser direct metal deposition: Theory and applications in manufacturing and maintenance. Adv. Laser Mater. Process. 2010:461–491. doi: 10.1533/9781845699819.6.461. DOI
Krauss H., Zaeh M.F. Investigations on manufacturability and process reliability of selective laser melting. Phys. Procedia. 2013;41:815–822. doi: 10.1016/j.phpro.2013.03.153. DOI
Louvis E., Fox P., Sutcliffe C.J. Selective laser melting of aluminium components. J. Mater. Process. Technol. 2011;211:275–284. doi: 10.1016/j.jmatprotec.2010.09.019. DOI
Aboulkhair N.T., Maskery I., Tuck C., Ashcroft I., Everitt N.M. On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. J. Mater. Process. Technol. 2016;230:88–98. doi: 10.1016/j.jmatprotec.2015.11.016. DOI
Zong F., Meng C., Guo Z., Ji F., Xiao H., Zhang X., Ma J., Ma H. Synthesis and characterization of magnesium nitride powder formed by Mg direct reaction with N2. J. Alloys Compd. 2010;508:172–176. doi: 10.1016/j.jallcom.2010.07.224. DOI
Salehi M., Maleksaeedi S., Farnoush H., Nai M.L.S., Meenashisundaram G.K., Gupta M. An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium. Powder Technol. 2018;333:252–261. doi: 10.1016/j.powtec.2018.04.026. DOI
Liu C., Li Q., Liang J., Zhou J., Wang L. Microstructure and corrosion behaviour of laser surface melting treated WE43 magnesium alloy. RSC Adv. 2016;6:30642–30651. doi: 10.1039/C5RA27010C. DOI