Evaluation of the Impact of the LPBF Manufacturing Conditions on Microstructure and Corrosion Behaviour in 3.5 wt.% NaCl of the WE43 Magnesium Alloy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2021-124341OB-C21
Agencia Estatal de Investigación
PID2021-123891OB-I00
Agencia Estatal de Investigación
PLEC2023-010346
Agencia Estatal de Investigación
PubMed
40805486
PubMed Central
PMC12348589
DOI
10.3390/ma18153613
PII: ma18153613
Knihovny.cz E-zdroje
- Klíčová slova
- WE43, additive manufacturing, corrosion, laser powder bed fusion, magnesium,
- Publikační typ
- časopisecké články MeSH
This work expands the processing window of the laser powder bed fusion (LPBF) processing of WE43 magnesium alloy by evaluating laser powers and scanning speeds up to 400 W and 1200 mm/s, and their effect on densification, microstructure, and electrochemical performance. Relative density of 99.9% was achieved for 300 W and 800 mm/s, showing that the use of high laser power is not a limitation for the manufacturing of Mg alloys, as has been usually considered. Microstructural characterisation revealed refined grains and the presence of RE-rich intermetallic particles, while microhardness increased with height due to thermal gradients. Electrochemical testing in 3.5 wt.% NaCl solution, a more aggressive media than those already used, indicated that the corrosion of samples with density values below 99% is conditioned by the porosity; however, above this value, in the WE43, the corrosion evolution is more related to the microstructure of the samples, according to electrochemical evaluation. This study demonstrates the viability of high-energy LPBF processing for WE43, offering optimised mechanical and corrosion properties for biomedical and structural applications.
Zobrazit více v PubMed
Prasad S.V.S., Prasad S.B., Verma K., Mishra R.K., Kumar V., Singh S. The role and significance of Magnesium in modern day research—A review. J. Magnes. Alloys. 2022;10:1–61. doi: 10.1016/j.jma.2021.05.012. DOI
Joost W.J., Krajewski P.E. Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 2017;128:107–112. doi: 10.1016/j.scriptamat.2016.07.035. DOI
Wang H., Wang J., Yang Y., Ying T., Xin Z., Hao N., Huang W., Zeng X. Development of highly corrosion-resistant Mg-Al-Y extruded alloy via regulating the Mg17Al12 phase. Corros. Sci. 2024;234:112124. doi: 10.1016/j.corsci.2024.112124. DOI
Chen L., Bao Y.H., Li Z.G., Qian L.H., Zhao G.Q., Zhang C.S. Fabrication of Al coating for corrosion protection of Mg−Zn−Al−Sn−Mn alloy based on cold spraying process. Trans. Nonferr. Met. Soc. China. 2024;34:2153–2166. doi: 10.1016/S1003-6326(24)66531-3. DOI
Staiger M.P., Pietak A.M., Huadmai J., Dias G. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials. 2006;27:1728–1734. doi: 10.1016/j.biomaterials.2005.10.003. PubMed DOI
Rotaru H., Schumacher R., Kim S.-G., Dinu C. Selective laser melted titanium implants: A new technique for the reconstruction of extensive zygomatic complex defects. Maxillofac. Plast. Reconstr. Surg. 2011;37:1. doi: 10.1186/s40902-015-0001-9. PubMed DOI PMC
Ahmadi M., Tabary S.A.A.B., Rahmatabadi D., Ebrahimi M.S., Abrinia K., Hashemi R. Review of selective laser melting of magnesium alloys: Advantages, microstructure and mechanical characterizations, defects, challenges, and applications. J. Mater. Res. Technol. 2022;19:1537–1562. doi: 10.1016/j.jmrt.2022.05.102. DOI
Kladovasilakis N., Charalampous P., Kostavelis I., Tzetzis D., Tzovaras D. Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review. Prog. Addit. Manuf. 2021;6:349–365. doi: 10.1007/s40964-021-00180-8. DOI
Yousif M.A.S., Al-Deheish I.A., Ali U., Akhtar S.S., Al-Athel K.S. Mechanical, tribological, and corrosion behavior of laser powder-bed fusion 316L stainless steel parts: Effect of build orientation. J. Mater. Res. Technol. 2024;33:1220–1233. doi: 10.1016/j.jmrt.2024.09.105. DOI
Gusieva K., Davies C.H.J., Scully J.R., Birbilis N. Corrosion of magnesium alloys: The role of alloying. Int. Mater. Rev. 2015;60:169–194. doi: 10.1179/1743280414Y.0000000046. DOI
Cao F., Song G.L., Atrens A. Corrosion and passivation of magnesium alloys. Corros. Sci. 2016;111:835–845. doi: 10.1016/j.corsci.2016.05.041. DOI
Esmaily M., Svensson J.E., Fajardo S., Birbilis N., Frankel G.S., Virtanen S., Arrabal R., Thomas S., Johansson L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017;89:92–193. doi: 10.1016/j.pmatsci.2017.04.011. DOI
Zhang X., Zhang B. Corrosion and electrochemical behavior of Mg–Y alloys in 3.5% NaCl solution. Trans. Nonferr. Met. Soc. China. 2013;23:1226–1236. doi: 10.1016/S1003-6326(13)62587-X. DOI
Coy E., Viejo F., Skeldon P., Thompson G.E. Susceptibility of rare-earth-magnesium alloys to micro-galvanic corrosion. Corros. Sci. 2010;52:3896–3906. doi: 10.1016/j.corsci.2010.08.006. DOI
Song G., StJohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ. J. Light Met. 2002;2:1–16. doi: 10.1016/S1471-5317(02)00008-1. DOI
Yan J., Sun Y., Xue F., Xue S., Tao W. Microstructure and mechanical properties in cast magnesium–neodymium binary alloys. Mater. Sci. Eng. A. 2008;476:366–371. doi: 10.1016/j.msea.2007.05.058. DOI
Gao L., Chen R.S., Han E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 2009;481:379–384. doi: 10.1016/j.jallcom.2009.02.131. DOI
Su Z.J., Liu C.M., Wang Y.C., Shu X. Effect of Y content on microstructure and mechanical properties of Mg–2·4Nd–0·2Zn–0·4Zr alloys. Mater. Sci. Technol. 2013;29:148–155. doi: 10.1179/1743284712Y.0000000149. DOI
Calado L.M., Carmezim M.J., Montemor M.F. Rare Earth Based Magnesium Alloys—A Review on WE Series. Front. Mater. 2022;8:804906. doi: 10.3389/fmats.2021.804906. DOI
Wei K., Wang Z., Zeng X. Influence of element vaporization on formability, composition, microstructure, and mechanical performance of the selective laser melted Mg–Zn–Zr components. Mater. Lett. 2015;156:187–190. doi: 10.1016/j.matlet.2015.05.074. DOI
King W.E., Barth H.D., Castillo V.M., Gallegos G.F., Gibbs J.W., Hahn D.E., Kamath C., Rubenchik A.M. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014;214:2915–2925. doi: 10.1016/j.jmatprotec.2014.06.005. DOI
Clijsters S., Craeghs T., Buls S., Kempen K., Kruth J.-P., Buls S. In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system. Int. J. Adv. Manuf. Technol. 2014;75:1089–1101. doi: 10.1007/s00170-014-6214-8. DOI
Gusarov V., Smurov I. Modeling the interaction of laser radiation with powder bed at selective laser melting. Phys. Procedia. 2010;5:381–394. doi: 10.1016/j.phpro.2010.08.065. DOI
Qian C., Zhang K., Zhu J., Liu Y., Liu Y., Liu J., Liu J., Yang Y., Wang H. Effect of processing parameters on the defects, microstructure, and property evaluation of Ti-6Al-4V titanium alloy processed by laser powder bed fusion. AIP Adv. 2024;14:025246. doi: 10.1063/7.0001251. DOI
Dunbar J., Denlinger E.R., Gouge M.F., Simpson T.W., Michaleris P. Comparisons of laser powder bed fusion additive manufacturing builds through experimental in situ distortion and temperature measurements. Addit. Manuf. 2017;15:57–65. doi: 10.1016/j.addma.2017.03.003. DOI
Yang L., Lo L., Ding S., Özel T. Monitoring and detection of meltpool and spatter regions in laser powder bed fusion of super alloy Inconel 625. Prog. Addit. Manuf. 2020;5:367–378. doi: 10.1007/s40964-020-00140-8. DOI
Gangireddy S., Gwalani B., Liu K., Faierson E.J., Mishra R.S. Microstructure and mechanical behavior of an additive manufactured (AM) WE43-Mg alloy. Addit. Manuf. 2019;26:53–64. doi: 10.1016/j.addma.2018.12.015. DOI
Suchý J., Klakurková L., Man O., Remešová M., Horynová M., Paloušek D., Koutný D., Krištofová P., Vojtěch D., Čelko L. Corrosion behaviour of WE43 magnesium alloy printed using selective laser melting in simulation body fluid solution. J. Manuf. Process. 2021;69:556–566. doi: 10.1016/j.jmapro.2021.08.006. DOI
Leung L.A., Marussi S., Atwood R.C., Towrie M., Withers P.J., Lee P.D. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat. Commun. 2018;9:1355. doi: 10.1038/s41467-018-03734-7. PubMed DOI PMC
Zumdick N.A., Jauer L., Kersting L.C., Kutz T.N., Schleifenbaum J.H., Zander D. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater. Charact. 2019;147:384–397. doi: 10.1016/j.matchar.2018.11.011. DOI
Yin B., Liu J., Peng B., Zhou M., Liu B., Ma X., Wang C., Wen P., Tian Y., Zheng Y. Influence of layer thickness on formation quality, microstructure, mechanical properties, and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion. J. Magnes. Alloys. 2024;12:1367–1385. doi: 10.1016/j.jma.2022.09.016. DOI
Benn F., Kröger N., Zinser M., van Gaalen K., Vaughan T.J., Yan M., Smeets R., Bibiza E., Malinov S., Buchanan F., et al. Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. Mater. Sci. Eng. C. 2021;124:112016. doi: 10.1016/j.msec.2021.112016. PubMed DOI
Esmaily M., Zeng Z., Mortazavi A.N., Gullino A., Choudhary S., Derra T., Benn F., D’Elia F., Müther M., Thomas S., et al. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting. Addit. Manuf. 2020;35:101321. doi: 10.1016/j.addma.2020.101321. DOI
Bär F., Berger L., Jauer L., Kurtuldu G., Schäublin R., Schleifenbaum J.H., Löffler J.F. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis. Acta Biomater. 2019;98:36–49. doi: 10.1016/j.actbio.2019.05.056. PubMed DOI
Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. ASTM International; West Conshohocken, PA, USA: 2021.
Zemková M., Minárik P., Dittrich J., Bohlen J., Král R. Individual effect of Y and Nd on the microstructure formation of Mg-Y-Nd alloys processed by severe plastic deformation and their effect on the subsequent mechanical and corrosion properties. J. Magnes. Alloys. 2023;11:509–521. doi: 10.1016/j.jma.2023.01.012. DOI
Krištofová P., Roudnická M., Kubásek J., Paloušek D., Suchý J., Vojtěch D. Influence of Production Parameters on the Properties of 3D Printed Magnesium Alloy Mg-4Y-3RE-Zr (WE43) Manuf. Technol. 2019;19:613–618. doi: 10.21062/ujep/343.2019/a/1213-2489/MT/19/4/6013. DOI
Shi Y., Guo K., Shi H., Huang X., Yang B., Sun J. Effects of process parameters on microstructure properties of WE43 magnesium alloy by selective laser melting. Mater. Today Commun. 2024;39:109151. doi: 10.1016/j.mtcomm.2024.109151. DOI
Suchy J., Horynová M., Klakurková L., Palousek D., Koutny D., Celko L. Effect of Laser Parameters on Processing of Biodegradable Magnesium Alloy WE43 via Selective Laser Melting Method. Materials. 2020;13:2623. doi: 10.3390/ma13112623. PubMed DOI PMC
Khairallah S.A., Anderson A.T., Rubenchik A., King W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016;108:36–45. doi: 10.1016/j.actamat.2016.02.014. DOI
Gianoglio D., Marola S., Battezzati L., Aversa A., Bosio F., Lombardi M., Manfredi D., Lorusso M. Banded microstructures in rapidly solidified Al-3 wt% Er. Intermetallics. 2020;119:106724. doi: 10.1016/j.intermet.2020.106724. DOI
Xie J., Zhang J., You Z., Liu S., Guan K., Wu R., Wang J., Feng J. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. J. Magnes. Alloys. 2021;9:41–56. doi: 10.1016/j.jma.2020.08.016. DOI
Acharya R., Sharon J.A., Staroselsky A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017;124:360–371. doi: 10.1016/j.actamat.2016.11.018. DOI
Salehi M., Maleksaeedi S., Farnoush H., Nai M.L.S., Meenashisundaram G.K., Gupta M. An investigation into interaction between magnesium powder and Ar gas: Implications for selective laser melting of magnesium. Powder Technol. 2018;333:252–261. doi: 10.1016/j.powtec.2018.04.026. DOI
Dreizin L., Berman C.H., Vicenzi E.P. Condensed-phase modifications in magnesium particle combustion in air. Combust. Flame. 2000;122:30–42. doi: 10.1016/S0010-2180(00)00101-2. DOI
Wang X.M., Zeng X.Q., Wu G.S., Yao S.S., Li L.B. Surface oxidation behavior of MgNd alloys. Appl. Surf. Sci. 2007;253:9017–9023. doi: 10.1016/j.apsusc.2007.05.023. DOI
Porter D.A., Easterling K.E., Sherif M.Y. Phase Transformations in Metals and Alloys. CRC Press; Boca Raton, FL, USA: 2021. DOI
Tkacz J., Slouková K., Minda J., Drábiková J., Fintová S., Doležal P., Wasserbauer J. Influence of the Composition of the Hank’s Balanced Salt Solution on the Corrosion Behavior of AZ31 and AZ61 Magnesium Alloys’. Metals. 2017;7:465. doi: 10.3390/met7110465. DOI
Atrens, Song G.-L., Liu M., Shi Z., Cao F., Dargusch M.S. Review of Recent Developments in the Field of Magnesium Corrosion. Adv. Eng. Mater. 2015;17:400–453. doi: 10.1002/adem.201400434. DOI
Song G., Atrens A., Stjohn D., Nairn J., Li Y. The electrochemical corrosion of pure magnesium in 1 N NaCl. Corros. Sci. 1997;39:855–875. doi: 10.1016/S0010-938X(96)00172-2. DOI
Pereira G.S., Koga G.Y., Avila J.A., Bittencourt I.M., Fernandez F., Miyazaki M.H., Botta W.J., Filho W.W.B. Corrosion resistance of WE43 Mg alloy in sodium chloride solution. Mater. Chem. Phys. 2021;272:124930. doi: 10.1016/j.matchemphys.2021.124930. DOI
Calado L.M., Taryba M.G., Carmezim M.J., Montemor M.F. Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy. Corros. Sci. 2018;142:12–21. doi: 10.1016/j.corsci.2018.06.013. DOI
Pereira G.S., Ramirez O.M.P., Avila P.R.T., Avila J.A., Pinto H.C., Miyazaki M.H., de Melo H.G., Filho W.W.B. Cerium conversion coating and sol-gel coating for corrosion protection of the WE43 Mg alloy. Corros. Sci. 2022;206:110527. doi: 10.1016/j.corsci.2022.110527. DOI
Brett C.M.A., Dias L., Trindade B., Fischer R., Mies S. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying. Electrochim. Acta. 2006;51:1752–1760. doi: 10.1016/j.electacta.2005.02.124. DOI
Bukovinová L., Hadzima B. Electrochemical characteristics of magnesium alloy AZ31 in Hank’s solution. Corros. Eng. Sci. Technol. 2012;47:352–357. doi: 10.1179/1743278212Y.0000000033. DOI