• This record comes from PubMed

Enhancing flood risk mitigation by advanced data-driven approach

. 2024 Sep 30 ; 10 (18) : e37758. [epub] 20240914

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Links

PubMed 39323812
PubMed Central PMC11422047
DOI 10.1016/j.heliyon.2024.e37758
PII: S2405-8440(24)13789-9
Knihovny.cz E-resources

Flood events in the Sefidrud River basin have historically caused significant damage to infrastructure, agriculture, and human settlements, highlighting the urgent need for improved flood prediction capabilities. Traditional hydrological models have shown limitations in capturing the complex, non-linear relationships inherent in flood dynamics. This study addresses these challenges by leveraging advanced machine learning techniques to develop more accurate and reliable flood estimation models for the region. The study applied Random Forest (RF), Bagging, SMOreg, Multilayer Perceptron (MLP), and Adaptive Neuro-Fuzzy Inference System (ANFIS) models using historical hydrological data spanning 50 years. The methods involved splitting the data into training (50-70 %) and validation sets, processed using WEKA 3.9 software. The evaluation revealed that the nonlinear ensemble RF model achieved the highest accuracy with a correlation of 0.868 and an root mean squared error (RMSE) of 0.104. Both RF and MLP significantly outperformed the linear SMOreg approach, demonstrating the suitability of modern machine learning techniques. Additionally, the ANFIS model achieved an exceptional R-squared accuracy of 0.99. The findings underscore the potential of data-driven models for accurate flood estimating, providing a valuable benchmark for algorithm selection in flood risk management.

See more in PubMed

Zainudini M.A. Flood risk and flood management regional perspectives in Sistan and Balochestan (Makoran), South East, Iran. Journal of Multidisciplinary Engineering Science and Technology (JMEST). 2019;6(5):8.

Kundzewicz Z.W., Su B., Wang Y., Xia J., Huang J., Jiang T. Flood risk and its reduction in China. Adv. Water Resour. 2019;130:37–45.

Escap U. 2019. Build a Bridge on Flood Risk Management: South-South and Regional Cooperation for Flood Risk Management in the Islamic Republic of Iran.

Watershed Department of Iran (WDI) Statistics of flooding area in Iran report. 2002. https://frw.ir/

Kundzewicz Z., Menzel L. 2003. Flood Risk and Vulnerability in the Changing World.

Di Baldassarre G., Kreibich H., Vorogushyn S., Aerts J., Arnbjerg-Nielsen K., Barendrecht M., et al. Hess Opinions: an interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrol. Earth Syst. Sci. 2018;22(11):5629–5637.

Zabihi O., Siamaki M., Gheibi M., Akrami M., Hajiaghaei-Keshteli M. A smart sustainable system for flood damage management with the application of artificial intelligence and multi-criteria decision-making computations. Int. J. Disaster Risk Reduc. 2023;84

Aly M.M., Refay N.H., Elattar H., Morsy K.M., Bandala E.R., Zein S.A., et al. Ecohydrology and flood risk management under climate vulnerability in relation to the sustainable development goals (SDGs): a case study in Nagaa Mobarak Village, Egypt. Nat. Hazards. 2022;112(2):1107–1135.

Zhu H., Leandro J., Lin Q. Optimization of artificial neural network (ANN) for maximum flood inundation forecasts. Water. 2021;13(16):2252.

Akbarian H., Gheibi M., Hajiaghaei-Keshteli M., Rahmani M. A hybrid novel framework for flood disaster risk control in developing countries based on smart prediction systems and prioritized scenarios. J. Environ. Manag. 2022;312 PubMed

Kauffeldt A., Wetterhall F., Pappenberger F., Salamon P., Thielen J. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environ. Model. Software. 2016;75:68–76.

Khosravi K., Golkarian A., Tiefenbacher J.P. Using optimized deep learning to predict daily streamflow: a comparison to common machine learning algorithms. Water Resour. Manag. 2022;36(2):699–716.

Mittal V., Kumar T.V., Goel A. International Conference on IoT, Intelligent Computing and Security: Select Proceedings of IICS 2021. Springer Nature Singapore; Singapore: 2023, April. Forecasting floods in the river basins of Odisha using machine learning; pp. 91–101.

Tanim A.H., McRae C.B., Tavakol-Davani H., Goharian E. Flood detection in urban areas using satellite imagery and machine learning. Water. 2022;14(7):1140.

Nakhaei M., Nakhaei P., Gheibi M., Chahkandi B., Wacławek S., Behzadian K., Chen A.S., Campos L.C. Enhancing community resilience in arid regions: a smart framework for flash flood risk assessment. Ecol. Indicat. 2023;153

Apollonio C., Balacco G., Novelli A., Tarantino E., Piccinni A.F. Land use change impact on flooding areas: the case study of Cervaro Basin (Italy) Sustainability. 2016;8(10):996.

Mosavi A., Ozturk P., Chau K-w. Flood prediction using machine learning models: literature review. Water. 2018;10(11) [Internet]

Mosavi A., Bathla J., Varkonyi-Koczy A. 2017. Predicting the Future Using Web Knowledge: State of the Art Survey.

Hou J., Zhou N., Chen G., Huang M., Bai G. Rapid forecasting of urban flood inundation using multiple machine learning models. Nat. Hazards. 2021;108(2):2335–2356.

Sarafanov M., Borisova Y., Maslyaev M., Revin I., Maximov G., Nikitin N.O. Short-term river flood forecasting using composite models and automated machine learning: the case study of Lena River. Water. 2021;13(24):3482.

Hauswirth S.M., Bierkens M.F., Beijk V., Wanders N. The potential of data driven approaches for quantifying hydrological extremes. Adv. Water Resour. 2021;155

Ren J., Ren B., Zhang Q., Zheng X. A novel hybrid extreme learning machine approach improved by K nearest neighbor method and fireworks algorithm for flood forecasting in medium and small watershed of loess region. Water. 2019;11(9)

Zahura F.T., Goodall J.L., Sadler J.M., Shen Y., Morsy M.M., Behl M. Training machine learning surrogate models from a high-fidelity physics-based model: application for real-time street-scale flood prediction in an urban coastal community. Water Resour. Res. 2020;56(10)

Zarei M., Bozorg-Haddad O., Baghban S., Delpasand M., Goharian E., Loáiciga H.A. Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages. Sci. Rep. 2021;11(1) PubMed PMC

Zhou Y., Cui Z., Lin K., Sheng S., Chen H., Guo S., et al. Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques. J. Hydrol. 2022;604

Piadeh F., Behzadian K., Chen A.S., Campos L.C., Rizzuto J.P., Kapelan Z. Event-based decision support algorithm for real-time flood forecasting in urban drainage systems using machine learning modelling. Environ. Model. Software. 2023;167

Dtissibe F.Y., Ari A.A.A., Abboubakar H., Njoya A.N., Mohamadou A., Thiare O. A comparative study of Machine Learning and Deep Learning methods for flood forecasting in the Far-North region, Cameroon. Scientific African. 2024;23

Defontaine T., Ricci S., Lapeyre C.J., Marchandise A., Le Pape E. vol. 2024. EGUsphere; 2024. pp. 1–32. (Real-time Flood Forecasting with Machine Learning Using Scarce Rainfall-Runoff Data).

2023. https://openjicareport.jica.go.jp/pdf/12031381_01.pdf

Jalali F.M., Chahkandi B., Gheibi M., Eftekhari M., Behzadian K., Campos L.C. Developing a smart and clean technology for bioremediation of antibiotic contamination in arable lands. Sustainable Chemistry and Pharmacy. 2023;33

Bouckaert R.R., Frank E., Hall M., Kirkby R., Reutemann P., Seewald A., Scuse D. University of Waikato; Hamilton, New Zealand: 2016. WEKA Manual for Version 3-9-1; pp. 1–341.

Ahmadlou M., Al‐Fugara A.K., Al‐Shabeeb A.R., Arora A., Al‐Adamat R., Pham Q.B., Al‐Ansari N., Linh N.T.T., Sajedi H. Flood susceptibility mapping and assessment using a novel deep learning model combining multilayer perceptron and autoencoder neural networks. Journal of Flood Risk Management. 2021;14(1)

Popescu M.C., Balas V.E., Perescu-Popescu L., Mastorakis N. Multilayer perceptron and neural networks. WSEAS Trans. Circuits Syst. 2009;8(7):579–588.

Islam M.M., Murase K. A new algorithm to design compact two-hidden-layer artificial neural networks. Neural Network. 2001;14(9):1265–1278. PubMed

Jang J.S. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics. 1993;23(3):665–685.

Gite A.V., Bodade R.M., Raut B.M. ANFIS controller and its application. Int. J. Eng. Res. Technol. 2013;2(2)

Jang J.S. Proceedings of IEEE 5th International Fuzzy Systems. vol. 2. IEEE; 1996, September. Input selection for ANFIS learning; pp. 1493–1499.

Hameed I.A. Using Gaussian membership functions for improving the reliability and robustness of students' evaluation systems. Expert Syst. Appl. 2011;38(6):7135–7142.

Mann H.B. Nonparametric tests against trend. Econometrica: J. Econom. Soc. 1945:245–259.

Kendall M.G. fourth ed. Charles Griffin; London, U.K: 1975. Rank Correlation Methods.

Naghettini M. Springer; 2017. Fundamentals of Statistical Hydrology.

Coles S. 2001. Classical Extreme Value Theory and Models; pp. 45–73.

Bobée B.J.H.B. 1999. pp. 100–105. (Extreme Flood Events Valuation Using Frequency Analysis: a Critical Review).

Yen B.C.J.R. System and Component Uncertainties in Water Resources. Cambridge University Press; Cambridge: 2002. Reliability, uncertainty, robustness of water resources systems BJ, Kundzewicz ZW , international hydrology series; pp. 133–142.

Subcommittee H. Guidelines for determining flood flow frequency. Bulletin B. 1982;17

Kidson R., Richards K.S. Flood frequency analysis: assumptions and alternatives. Prog. Phys. Geogr. 2005;29(3):392–410.

Davis J., Goadrich M. Proceedings of the 23rd International Conference on Machine Learning. 2006, June. The relationship between Precision-Recall and ROC curves; pp. 233–240.

Lawal Z.K., Yassin H., Zakari R.Y. 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) IEEE; 2021, December. Flood prediction using machine learning models: a case study of Kebbi state Nigeria; pp. 1–6.

Sankaranarayanan S., Prabhakar M., Satish S., Jain P., Ramprasad A., Krishnan A. Flood prediction based on weather parameters using deep learning. Journal of Water and Climate Change. 2020;11(4):1766–1783.

Motta M., de Castro Neto M., Sarmento P. A mixed approach for urban flood prediction using Machine Learning and GIS. Int. J. Disaster Risk Reduc. 2021;56

Volosencu C., Aceves-Fernandez M.A. BoD–Books on Demand; 2020. Fuzzy Logic.

Widiasari I.R., Nugroho L.E. 2017 International Conference on Innovative and Creative Information Technology (ICITech) IEEE; 2017, November. Deep learning multilayer perceptron (MLP) for flood prediction model using wireless sensor network based hydrology time series data mining; pp. 1–5.

Won Y.M., Lee J.H., Moon H.T., Moon Y.I. Development and application of an urban flood forecasting and warning process to reduce urban flood damage: a case study of Dorim River basin, Seoul. Water. 2022;14(2):187.

Weber M., Liwicki M., Stricker D., Scholzel C., Uchida S. 2014 22nd International Conference on Pattern Recognition. IEEE; 2014, August. Lstm-based early recognition of motion patterns; pp. 3552–3557.

Zaman M., Hassan A. Improved statistical features-based control chart patterns recognition using ANFIS with fuzzy clustering. Neural Comput. Appl. 2019;31(10):5935–5949.

Kimura N., Yoshinaga I., Sekijima K., Azechi I., Baba D. Convolutional neural network coupled with a transfer-learning approach for time-series flood predictions. Water. 2019;12(1):96.

Sahoo A., Samantaray S., Paul S. Efficacy of ANFIS-GOA technique in flood prediction: a case study of Mahanadi river basin in India. H2Open Journal. 2021;4(1):137–156.

Indra G., Duraipandian N. An improved flood forecasting system with cluster based visualization and analyzing using GK-ANFIS and CGDNN. Expert Syst. Appl. 2023;212

Tabbussum R., Dar A.Q. Modelling hybrid and backpropagation adaptive neuro-fuzzy inference systems for flood forecasting. Nat. Hazards. 2021;108:519–566.

Haznedar B., Kilinc H.C. A hybrid ANFIS-GA approach for estimation of hydrological time series. Water Resour. Manag. 2022;36(12):4819–4842.

Dodangeh E., Choubin B., Eigdir A.N., Nabipour N., Panahi M., Shamshirband S., Mosavi A. Integrated machine learning methods with resampling algorithms for flood susceptibility prediction. Sci. Total Environ. 2020;705 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...