Synthetic Extracellular Matrix of Polyvinyl Alcohol Nanofibers for Three-Dimensional Cell Culture
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
HR16C0001
Korea Health Industry Development Institute - Republic of Korea
2019R1A6C1010003
Korea Basic Science Institute
2022R1A4A5032702
National Research Foundation of Korea
PubMed
39330237
PubMed Central
PMC11433135
DOI
10.3390/jfb15090262
PII: jfb15090262
Knihovny.cz E-zdroje
- Klíčová slova
- extracellular matrix, nanofibers, polyvinyl alcohol, three-dimensional cell cultures,
- Publikační typ
- časopisecké články MeSH
An ideal extracellular matrix (ECM) replacement scaffold in a three-dimensional cell (3D) culture should induce in vivo-like interactions between the ECM and cultured cells. Highly hydrophilic polyvinyl alcohol (PVA) nanofibers disintegrate upon contact with water, resulting in the loss of their fibrous morphology in cell cultures. This can be resolved by using chemical crosslinkers and post-crosslinking. A crosslinked, water-stable, porous, and optically transparent PVA nanofibrous membrane (NM) supports the 3D growth of various cell types. The binding of cells attached to the porous PVA NM is low, resulting in the aggregation of cultured cells in prolonged cultures. PVA NMs containing integrin-binding peptides of fibronectin and laminin were produced to retain the blended peptides as cell-binding substrates. These peptide-blended PVA NMs promote peptide-specific cell adherence and growth. Various cells, including epithelial cells, cultured on these PVA NMs form layers instead of cell aggregates and spheroids, and their growth patterns are similar to those of the cells cultured on an ECM-coated PVA NM. The peptide-retained PVA NMs are non-stimulatory to dendritic cells cultured on the membranes. These peptide-retaining PVA NMs can be used as an ECM replacement matrix by providing in vivo-like interactions between the matrix and cultured cells.
D Immune System Imaging Core Center Ajou University Suwon 16499 Republic of Korea
Department of Medical Sciences The Graduate School Ajou University Suwon 16499 Republic of Korea
Department of Pharmacology School of Medicine Ajou University Suwon 16499 Republic of Korea
School of Mechanical Engineering Kyungpook National University Daegu 41566 Republic of Korea
Zobrazit více v PubMed
Rosso F., Giordano A., Barbarisi M., Barbarisi A. From cell-ECM interactions to tissue engineering. J. Cell Physiol. 2004;199:174–180. doi: 10.1002/jcp.10471. PubMed DOI
Humphries J.D., Byron A., Humphries M.J. Integrin ligands at a glance. J. Cell Sci. 2006;119:3901–3903. doi: 10.1242/jcs.03098. PubMed DOI PMC
Harburger D.S., Calderwood D.A. Integrin signalling at a glance. J. Cell Sci. 2009;122:159–163. doi: 10.1242/jcs.018093. PubMed DOI PMC
Badylak S.F., Freytes D.O., Gilbert T.W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009;5:1–13. doi: 10.1016/j.actbio.2008.09.013. PubMed DOI
Knight E., Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J. Anat. 2015;227:746–756. doi: 10.1111/joa.12257. PubMed DOI PMC
Stocco T.D., Bassous N.J., Zhao S., Granato A.E.C., Webster T.J., Lobo A.O. Nanofibrous scaffolds for biomedical applications. Nanoscale. 2018;10:12228–12255. doi: 10.1039/C8NR02002G. PubMed DOI
Gao X., Han S., Zhang R., Liu G., Wu J. Progress in electrospun composite nanofibers: Composition, performance and applications for tissue engineering. J. Mater. Chem. B. 2019;7:7075–7089. doi: 10.1039/C9TB01730E. PubMed DOI
Zulkifli M.Z.A., Nordin D., Shaari N., Kamarudin S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymer. 2023;15:2418. doi: 10.3390/polym15112418. PubMed DOI PMC
Chen S., John J.V., McCarthy A., Xie J. New forms of electrospun nanofiber materials for biomedical applications. J. Mater. Chem. B. 2020;8:3733–3746. doi: 10.1039/D0TB00271B. PubMed DOI PMC
Liang D., Hsiao B.S., Chu B. Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 2007;59:1392–1412. doi: 10.1016/j.addr.2007.04.021. PubMed DOI PMC
Chen J., Rong F., Xie Y. Fabrication, Microstructures and Sensor Applications of Highly Ordered Electrospun Nanofibers: A Review. Materials. 2023;16:3310. doi: 10.3390/ma16093310. PubMed DOI PMC
Xue J., Wu T., Dai Y., Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019;119:5298–5415. doi: 10.1021/acs.chemrev.8b00593. PubMed DOI PMC
Zahra F.T., Quick Q., Mu R. Electrospun PVA fibers for drug delivery: A review. Polymers. 2023;15:3837. doi: 10.3390/polym15183837. PubMed DOI PMC
Kamaraj M., Moghimi N., Chen J., Morales R., Chen S., Khademhosseini A., John J.V. New dimensions of electrospun nanofiber material designs for biotechnological uses. Trends Biotechnol. 2024;42:631–647. doi: 10.1016/j.tibtech.2023.11.008. PubMed DOI PMC
Wang Y., Yu D.G., Liu Y., Liu Y.N. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J. Funct. Biomater. 2022;13:289. doi: 10.3390/jfb13040289. PubMed DOI PMC
Dahlin R.L., Kasper F.K., Mikos A.G. Polymeric nanofibers in tissue engineering. Tissue Eng. Part B Rev. 2011;17:349–364. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC
Phutane P., Telange D., Agrawal S., Gunde M., Kotkar K., Pethe A. Biofunctionalization and Applications of Polymeric Nanofibers in Tissue Engineering and Regenerative Medicine. Polymers. 2023;15:1202. doi: 10.3390/polym15051202. PubMed DOI PMC
Linh N.T., Min Y.K., Song H.Y., Lee B.T. Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010;95:184–191. doi: 10.1002/jbm.b.31701. PubMed DOI
Huang C.-Y., Hu K.-H., Wei Z.-H. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Sci. Rep. 2016;6:37960. doi: 10.1038/srep37960. PubMed DOI PMC
Law J.X., Liau L.L., Saim A., Yang Y., Idrus R. Electrospun collagen nanofibers and their applications in skin tissue engineering. Tissue Eng. Regen. Med. 2017;14:699–718. doi: 10.1007/s13770-017-0075-9. PubMed DOI PMC
Xu Y., Shi G., Tang J., Cheng R., Shen X., Gu Y., Wu L., Xi K., Zhao Y., Cui W., et al. ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Sci. Adv. 2020;6:eabc2036. doi: 10.1126/sciadv.abc2036. PubMed DOI PMC
Keshvardoostchokami M., Majidi S.S., Huo P., Ramachandran R., Chen M., Liu B. Electrospun nanofibers of natural and synthetic polymers as artificial extracellular matrix for tissue engineering. Nanomaterials. 2021;11:21. doi: 10.3390/nano11010021. PubMed DOI PMC
Bucci R., Vaghi F., Erba E., Romanelli A., Gelmi M.L., Clerici F. Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomater. 2021;122:82–100. doi: 10.1016/j.actbio.2020.11.051. PubMed DOI
Leite M.L., Soares D.G., Anovazzi G., Mendes Soares I.P., Hebling J., de Souza Costa C.A. Development of fibronectin-loaded nanofiber scaffolds for guided pulp tissue regeneration. J. Biomed. Mater. Res. 2021;109:1244–1258. doi: 10.1002/jbm.b.34785. PubMed DOI
Samokhin Y., Varava Y., Diedkova K., Yanko I., Husak Y., Radwan-Pragłowska J., Pogorielova O., Janus Ł., Pogorielov M., Korniienko V. Fabrication and Characterization of Electrospun Chitosan/Polylactic Acid (CH/PLA) Nanofiber Scaffolds for Biomedical Application. J. Funct. Biomater. 2023;14:414. doi: 10.3390/jfb14080414. PubMed DOI PMC
Sanchez Ramirez D.O., Vineis C., Cruz-Maya I., Tonetti C., Guarino V., Varesano A. Wool Keratin Nanofibers for Bioinspired and Sustainable Use in Biomedical Field. J. Funct. Biomater. 2022;14:5. doi: 10.3390/jfb14010005. PubMed DOI PMC
Alves M.H., Jensen B.E., Smith A.A., Zelikin A.N. Poly(vinyl alcohol) physical hydrogels: New vista on a long serving biomaterial. Macromol. Biosci. 2011;11:1293–1313. doi: 10.1002/mabi.201100145. PubMed DOI
Teixeira M.A., Amorim M.T.P., Felgueiras H.P. Poly(Vinyl Alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers. 2019;12:7. doi: 10.3390/polym12010007. PubMed DOI PMC
Gaaz T.S., Sulong A.B., Akhtar M.N., Kadhum A.A., Mohamad A.B., Al-Amiery A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules. 2015;20:22833–22847. doi: 10.3390/molecules201219884. PubMed DOI PMC
Park J.-C., Ito T., Kim K.-O., Kim K.-W., Kim B.-S., Khil M.-S., Kim H.-Y., Kim I.-S. Electrospun poly(vinyl alcohol) nanofibers: Effects of degree of hydrolysis and enhanced water stability. Polym. J. 2010;42:273–276. doi: 10.1038/pj.2009.340. DOI
Bolto B., Tran T., Hoang M., Xie Z. Crosslinked poly(vinyl alcohol) membranes. Prog. Polym. Sci. 2009;34:969–981. doi: 10.1016/j.progpolymsci.2009.05.003. DOI
Tang C., Saquing C.D., Harding J.R., Khan S.A. In situ cross-linking of electrospun poly(vinyl alcohol) nanofibers. Macromolecules. 2010;43:630–637. doi: 10.1021/ma902269p. DOI
Han W.H., Wang Q.Y., Kang Y.Y., Shi L.R., Long Y., Zhou X., Hao C.C. Cross-linking electrospinning. Nanoscale. 2023;15:15513–15551. doi: 10.1039/D3NR03956K. PubMed DOI
Miraftab M., Saifullah A.N., Cay A. Physical stabilisation of electrospun poly(vinyl alcohol) nanofibres: Comparative study on methanol and heat-based crosslinking. J. Mater. Sci. 2015;50:1943–1957. doi: 10.1007/s10853-014-8759-1. DOI
Weis C., Odermatt E.K., Kressler J., Funke Z., Wehner T., Freytag D. Poly(vinyl alcohol) membranes for adhesion prevention. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004;70:191–202. doi: 10.1002/jbm.b.30007. PubMed DOI
Oh Y.S., Choi M.H., Shin J.I., Maza P.A.M.A., Kwak J.Y. Coculturing of endothelial and cancer cells in a nanofibrous scaffold-based two-layer system. Int. J. Mol. Sci. 2020;21:4128. doi: 10.3390/ijms21114128. PubMed DOI PMC
Kim T.E., Kim C.G., Kim J.S., Jin S., Yoon S., Bae H.R., Kim J.H., Jeong Y.H., Kwak J.Y. Three-dimensional culture and interaction of cancer cells and dendritic cells in an electrospun nano-submicron hybrid fibrous scaffold. Int. J. Nanomed. 2016;11:823–835. PubMed PMC
Koo O.M., Fiske J.D., Yang H., Nikfar F., Thakur A., Scheer B., Adams M.L. Investigation into stability of poly(vinyl alcohol)-based Opadry® II films. AAPS PharmSciTech. 2011;12:746–754. doi: 10.1208/s12249-011-9630-1. PubMed DOI PMC
Desai S.D., Kundu I., Swamy N.P., Crull G.B., Pan D., Zhao J., Shah R.P., Venkatesh C., Vig B., Varia S.A., et al. Cross-linking of poly (vinyl alcohol) films under acidic and thermal stress. Eur. J. Pharm. Sci. 2020;152:105429. doi: 10.1016/j.ejps.2020.105429. PubMed DOI
Aota S., Nomizu M., Yamada K.M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem. 1994;269:24756–24761. doi: 10.1016/S0021-9258(17)31456-4. PubMed DOI
Tashiro K., Sephel G.C., Weeks B., Sasaki M., Martin G.R., Kleinman H.K., Yamada Y. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 1989;264:16174–16182. doi: 10.1016/S0021-9258(18)71604-9. PubMed DOI
Shaikh R.P., Kumar P., Choonara Y.E., du Toit L.C., Pillay V. Crosslinked electrospun PVA nanofibrous membranes: Elucidation of their physicochemical, physicomechanical and molecular disposition. Biofabrication. 2012;4:025002. doi: 10.1088/1758-5082/4/2/025002. PubMed DOI
Wang Y., Hsieh Y.-L. Crosslinking of polyvinyl alcohol (PVA) fibrous membranes with glutaraldehyde and PEG diacylchloride. J. Appl. Polym. Sci. 2010;116:3249–3255. doi: 10.1002/app.31750. DOI
Baştürk E., Demir S., Danış Ö., Kahraman M.V. Covalent immobilization of α-amylase onto thermally crosslinked electrospun PVA/PAA nanofibrous hybrid membranes. J. Appl. Polym. Sci. 2013;127:349–355. doi: 10.1002/app.37901. DOI
Kumeta K., Nagashima I., Matsui S., Mizoguchi K. Crosslinking reaction of poly(vinyl alcohol) with poly(acrylic acid) (PAA) by heat treatment: Effect of neutralization of PAA. J. Appl. Polym. Sci. 2003;90:2420–2427. doi: 10.1002/app.12910. DOI
Destaye A.G., Lin C.K., Lee C.K. Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles. ACS Appl. Mater. Interfaces. 2013;5:4745–4752. doi: 10.1021/am401730x. PubMed DOI
Gough J.E., Scotchford C.A., Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J. Biomed. Mater. Res. 2002;61:121–130. doi: 10.1002/jbm.10145. PubMed DOI
Schwartz M.A., Chen C.S. Deconstructing Dimensionality. Science. 2013;339:402–404. doi: 10.1126/science.1233814. PubMed DOI
Chen M., Patra P.K., Warner S.B., Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng. 2007;13:579–587. doi: 10.1089/ten.2006.0205. PubMed DOI
Li X., Wang X., Yao D., Jiang J., Guo X., Gao Y., Li Q., Shen C. Effects of aligned and random fibers with different diameter on cell behaviors. Coll. Surf. B Biointerfaces. 2018;171:461–467. doi: 10.1016/j.colsurfb.2018.07.045. PubMed DOI
Beachley V., Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Prog. Polym. Sci. 2010;35:868–892. doi: 10.1016/j.progpolymsci.2010.03.003. PubMed DOI PMC
Siadat S.M., Silverman A.A., DiMarzio C.A., Ruberti J.W. Measuring collagen fibril diameter with differential interference contrast microscopy. J. Struct. Biol. 2021;213:107697. doi: 10.1016/j.jsb.2021.107697. PubMed DOI PMC
Hynes R.O. Integrins: Bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/S0092-8674(02)00971-6. PubMed DOI
Buck C.A., Horwitz A.F. Cell surface receptors for extracellular matrix molecules. Annu. Rev. Cell Biol. 1987;3:179–205. doi: 10.1146/annurev.cb.03.110187.001143. PubMed DOI
Barczyk M., Carracedo S., Gullberg D. Integrins. Cell Tissue Res. 2010;339:269–280. doi: 10.1007/s00441-009-0834-6. PubMed DOI PMC
Nuttelman C.R., Mortisen D.J., Henry S.M., Anseth K.S. Attachment of fibronectin to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, and migration. J. Biomed. Mater. Res. 2001;57:217–223. doi: 10.1002/1097-4636(200111)57:2<217::AID-JBM1161>3.0.CO;2-I. PubMed DOI
Goldvaser M., Epstein E., Rosen O., Jayson A., Natan N., Ben-Shalom T., Saphier S., Katalan S., Shoseyov O. Poly(vinyl alcohol)-methacrylate with CRGD peptide: A photocurable biocompatible hydrogel. J. Tissue Eng. Regen. Med. 2022;16:140–150. doi: 10.1002/term.3265. PubMed DOI
Serrano M.C., Portolés M.T., Vallet-Regí M., Izquierdo I., Galletti L., Comas J.V., Pagani R. Vascular endothelial and smooth muscle cell culture on NaOH-treated poly(ε-caprolactone) films: A preliminary study for vascular graft development. Macromol. Biosci. 2005;5:415–423. doi: 10.1002/mabi.200400214. PubMed DOI
Park J.S., Kim J.-M., Lee S.J., Lee S.G., Jeong Y.-K., Kim S.E., Lee S.C. Surface hydrolysis of fibrous poly(ε-caprolactone) scaffolds for enhanced osteoblast adhesion and proliferation. Macromol. Res. 2007;15:424–429. doi: 10.1007/BF03218809. DOI
Chen F., Lee C.N., Teoh S.H. Nanofibrous modification on ultra-thin poly(e-caprolactone) membrane via electrospinning. Mater. Sci. Eng. C. 2007;27:325–332. doi: 10.1016/j.msec.2006.05.004. DOI
Park G.E., Pattison M.A., Park K., Webster T.J. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26:3075–3082. doi: 10.1016/j.biomaterials.2004.08.005. PubMed DOI
Gao J., Niklason L., Langer R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J. Biomed. Mater. Res. 1998;42:417–424. doi: 10.1002/(SICI)1097-4636(19981205)42:3<417::AID-JBM11>3.0.CO;2-D. PubMed DOI
Perego G., Preda P., Pasquinelli G., Curti T., Freyrie A., Cenni E. Functionalization of poly-(L-lactic-co-epsilon-caprolactone): Effects of surface modification on endothelial cell proliferation and hemocompatibility [corrected] J. Biomater. Sci. Polym. Ed. 2003;14:1057–1075. doi: 10.1163/156856203769231565. PubMed DOI