Upregulation of Apoptosis Related Genes in Clinically Normal Tongue Contralateral to Squamous Cell Carcinoma of the Oral Tongue, an Effort to Maintain Tissue Homeostasis
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
39348078
PubMed Central
PMC11442960
DOI
10.1007/s12105-024-01695-6
PII: 10.1007/s12105-024-01695-6
Knihovny.cz E-zdroje
- Klíčová slova
- ZNF395, Apoptosis, Etiologic field effect, Field cancerization, SCCOT,
- MeSH
- apoptóza * genetika MeSH
- dlaždicobuněčné karcinomy hlavy a krku * genetika patologie MeSH
- dospělí MeSH
- homeostáza genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory jazyka * genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- spinocelulární karcinom genetika patologie MeSH
- transkriptom MeSH
- upregulace * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: The field cancerization concept indicates the presence of pre-cancerous changes in clinically normal tissue surrounding the tumor. In squamous cell carcinoma of the oral tongue (SCCOT) which is infrequently linked to human papillomavirus infection, we have previously reported that clinically normal tongue contralateral to tumor (NTCT) is molecularly abnormal. Here, combining our transcriptomic and genomic data, we aimed to investigate the contribution of molecular changes in NTCT to cancer development. METHODS: Microarray gene expression data of 14 healthy controls, 23 NTCT and 29 SCCOT samples were investigated to characterize transcriptional profiles in NTCT. Whole exome sequencing and RNA-sequencing data of paired NTCT and tumor samples from 15 SCCOT patients were used to study correlation between copy number variation and differential gene expression. RESULTS: Using supervised multivariate partial least squares discriminant analysis, a total of 61 mRNAs that distinguish NTCT from healthy tongue were selected. Functional enrichment analysis of the 22 upregulated genes showed increased "positive regulation of nitrogen compound metabolic process" in NTCT. All 12 genes involved in this process have roles in apoptosis (anti- and/or pro-apoptotic). Compared to healthy controls, Zinc Finger Protein 395 (ZNF395), a pro-apoptotic tumor suppressor located on chromosome 8p, was the only gene showing increased mRNA level in NTCT whereas decreased in SCCOT. Given the frequent loss of chromosome 8p in SCCOT, the impact of ZNF395 copy number variation on gene expression was further examined, revealing a positive correlation between copy number and mRNA level (correlation coefficient = 0.572, p < 0.001). CONCLUSION: NTCT is susceptible to malignant transformation, where tissue homeostasis is maintained at least partly through regulation of apoptosis. Loss of the pro-apoptotic gene ZNF395 could thus initiate cancer development.
Department of Clinical Sciences Umeå University Umeå 90187 Sweden
Department of Oral and Maxillo Facial Surgery Mater Dei Hospital 70125 Bari Italy
Zobrazit více v PubMed
Global Cancer Observatory [cited 2024 February 13]; https://gco.iarc.fr/en
Chow LQM (2020) Head and Neck Cancer. N Engl J Med 382(1):60–72. 10.1056/NEJMra1715715 PubMed
Tan Y, Wang Z, Xu M et al (2023) Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 15(1):44. 10.1038/s41368-023-00249-w PubMed PMC
Mello FW, Melo G, Pasetto JJ, Silva CAB, Warnakulasuriya S, Rivero ERC (2019) The synergistic effect of tobacco and alcohol consumption on oral squamous cell carcinoma: a systematic review and meta-analysis. Clin Oral Investig 23(7):2849–2859. 10.1007/s00784-019-02958-1 PubMed
Lechner M, Liu J, Masterson L, Fenton TR (2022) HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol 19(5):306–327. 10.1038/s41571-022-00603-7 PubMed PMC
Katirachi SK, Gronlund MP, Jakobsen KK, Gronhoj C, von Buchwald C (2023) The prevalence of HPV in oral cavity squamous cell carcinoma. Viruses 15(2). 10.3390/v15020451 PubMed PMC
Matsuo K, Akiba J, Kusukawa J, Yano H (2022) Squamous cell carcinoma of the tongue: subtypes and morphological features affecting prognosis. Am J Physiol Cell Physiol 323(6):C1611–C23. 10.1152/ajpcell.00098.2022 PubMed
Shetty SS, Kudpaje A, Jayaraj R, Rao V, Shah PK (2019) Tongue cancer: a discrete oral cavity subsite. Oral Oncol 99:104348. 10.1016/j.oraloncology.2019.06.029 PubMed
Pickering CR, Zhang J, Neskey DM et al (2014) Squamous cell carcinoma of the oral tongue in young non-smokers is genomically similar to tumors in older smokers. Clin Cancer Res 20(14):3842–3848. 10.1158/1078-0432.CCR-14-0565 PubMed PMC
Vettore AL, Ramnarayanan K, Poore G et al (2015) Mutational landscapes of tongue carcinoma reveal recurrent mutations in genes of therapeutic and prognostic relevance. Genome Med 7(1):98. 10.1186/s13073-015-0219-2 PubMed PMC
Gu X, Coates PJ, Boldrup L et al (2019) Copy number variation: a prognostic marker for young patients with squamous cell carcinoma of the oral tongue. J Oral Pathol Med 48(1):24–30. 10.1111/jop.12792 PubMed PMC
Gu X, Wang L, Coates PJ et al (2023) Evidence for etiologic field changes in tongue distant from tumor in patients with squamous cell carcinoma of the oral tongue. J Pathol 259(1):93–102. 10.1002/path.6025 PubMed PMC
Arantes L, Cruvinel-Carloni A, de Carvalho AC et al (2020) TERT promoter mutation C228T increases risk for Tumor recurrence and death in Head and Neck Cancer patients. Front Oncol 10:1275. 10.3389/fonc.2020.01275 PubMed PMC
Jakubek YA, Chang K, Sivakumar S et al (2020) Large-scale analysis of acquired chromosomal alterations in non-tumor samples from patients with cancer. Nat Biotechnol 38(1):90–96. 10.1038/s41587-019-0297-6 PubMed PMC
Wu P, Xie C, Yang L et al (2021) The genomic architectures of tumour-adjacent tissues, plasma and saliva reveal evolutionary underpinnings of relapse in head and neck squamous cell carcinoma. Br J Cancer 125(6):854–864. 10.1038/s41416-021-01464-0 PubMed PMC
Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6(5):963–968 PubMed
Curtius K, Wright NA, Graham TA (2018) An evolutionary perspective on field cancerization. Nat Rev Cancer 18(1):19–32. 10.1038/nrc.2017.102 PubMed
Lochhead P, Chan AT, Nishihara R et al (2015) Etiologic field effect: reappraisal of the field effect concept in cancer predisposition and progression. Mod Pathol 28(1):14–29. 10.1038/modpathol.2014.81 PubMed PMC
Aran D, Camarda R, Odegaard J et al (2017) Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat Commun 8(1):1077. 10.1038/s41467-017-01027-z PubMed PMC
Boldrup L, Gu X, Coates PJ et al (2017) Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget 8(12):19389–19402. 10.18632/oncotarget.14288 PubMed PMC
Sanz-Pamplona R, Berenguer A, Cordero D et al (2014) Aberrant gene expression in mucosa adjacent to tumor reveals a molecular crosstalk in colon cancer. Mol Cancer 13:46. 10.1186/1476-4598-13-46 PubMed PMC
Risk MC, Knudsen BS, Coleman I et al (2010) Differential gene expression in benign prostate epithelium of men with and without prostate cancer: evidence for a prostate cancer field effect. Clin Cancer Res 16(22):5414–5423. 10.1158/1078-0432.CCR-10-0272 PubMed PMC
Huang X, Stern DF, Zhao H (2016) Transcriptional profiles from paired normal samples offer complementary information on Cancer patient survival–evidence from TCGA Pan-cancer Data. Sci Rep 6:20567. 10.1038/srep20567 PubMed PMC
Oh E, Lee H (2023) Transcriptomic data in tumor-adjacent normal tissues harbor prognostic information on multiple cancer types. Cancer Med 12(10):11960–11970. 10.1002/cam4.5864 PubMed PMC
Attaran N, Gu X, Coates PJ et al (2020) Downregulation of TAP1 in Tumor-Free Tongue Contralateral to squamous cell carcinoma of the oral Tongue, an Indicator of Better Survival. Int J Mol Sci 21(17). 10.3390/ijms21176220 PubMed PMC
Gu X, Boldrup L, Coates PJ et al (2019) High immune cytolytic activity in tumor-free tongue tissue confers better prognosis in patients with squamous cell carcinoma of the oral tongue. J Pathol Clin Res 5(4):240–247. 10.1002/cjp2.138 PubMed PMC
Shi W, Oshlack A, Smyth GK (2010) Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res 38(22):e204. 10.1093/nar/gkq871 PubMed PMC
Van der Auwera GA (2020) OCB, Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). : O’Reilly Media
McKenna A, Hanna M, Banks E et al (2010) The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. 10.1101/gr.107524.110 PubMed PMC
Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. 10.1038/nmeth.3317 PubMed PMC
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33(3):290–295. 10.1038/nbt.3122 PubMed PMC
Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. 10.1186/1471-2105-12-323 PubMed PMC
Wheelock AM, Wheelock CE (2013) Trials and tribulations of ‘omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol Biosyst 9(11):2589–2596. 10.1039/c3mb70194h PubMed
Kolberg L, Raudvere U, Kuzmin I, Adler P, Vilo J, Peterson H (2023) G:profiler-interoperable web service for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res 51(W1):W207–W12. 10.1093/nar/gkad347 PubMed PMC
Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP (2006) GenePattern 2.0. Nat Genet 38(5):500–501. 10.1038/ng0506-500 PubMed
Kurmi K, Haigis MC (2020) Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol 30(5):408–424. 10.1016/j.tcb.2020.02.005 PubMed PMC
Zhang H, Luo Z, Tang J et al (2022) Transcription factor NFIC functions as a tumor suppressor in lung squamous cell carcinoma progression by modulating lncRNA CASC2. Cell Cycle 21(1):63–73. 10.1080/15384101.2021.1995130 PubMed PMC
Lopez A, Reyna DE, Gitego N et al (2022) Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun 13(1):1199. 10.1038/s41467-022-28741-7 PubMed PMC
Kunisky AK, Anyaeche VI, Herron RS, Park CY, Hwang HW (2021) Shift in MSL1 alternative polyadenylation in response to DNA damage protects cancer cells from chemotherapeutic agent-induced apoptosis. Cell Rep 37(2):109815. 10.1016/j.celrep.2021.109815 PubMed PMC
Tsukahara T, Kimura S, Ichimiya S et al (2009) Scythe/BAT3 regulates apoptotic cell death induced by papillomavirus binding factor in human osteosarcoma. Cancer Sci 100(1):47–53. 10.1111/j.1349-7006.2008.00991.x PubMed PMC
Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458(7238):591–596. 10.1038/nature07849 PubMed PMC
Zheng Z, Li X, Yang B et al (2023) SORL1 stabilizes ABCB1 to promote cisplatin resistance in ovarian cancer. Funct Integr Genomics 23(2):147. 10.1007/s10142-023-01075-3 PubMed
Dunys J, Kawarai T, Sevalle J et al (2007) p53-Dependent Aph-1 and Pen-2 anti-apoptotic phenotype requires the integrity of the gamma-secretase complex but is independent of its activity. J Biol Chem 282(14):10516–10525. 10.1074/jbc.M611572200 PubMed
Ishii T, Igawa T, Hayakawa H, Fujita T, Sekiguchi M, Nakabeppu Y (2020) PCBP1 and PCBP2 both bind heavily oxidized RNA but cause opposing outcomes, suppressing or increasing apoptosis under oxidative conditions. J Biol Chem 295(34):12247–12261. 10.1074/jbc.RA119.011870 PubMed PMC
Srivastava S, Makala H, Sharma V, Suri V, Sarkar C, Kulshreshtha R (2022) MED12 is overexpressed in glioblastoma patients and serves as an oncogene by targeting the VDR/BCL6/p53 axis. Cell Mol Life Sci 79(2):104. 10.1007/s00018-021-04056-6 PubMed PMC
Wang G, Zhuang Z, Shen S et al (2022) Regulation of PTEN and ovarian cancer progression by an E3 ubiquitin ligase RBCK1. Hum Cell 35(3):896–908. 10.1007/s13577-022-00681-w PubMed
Gambi G, Di Simone E, Basso V et al (2019) The Transcriptional Regulator Sin3A contributes to the oncogenic potential of STAT3. Cancer Res 79(12):3076–3087. 10.1158/0008-5472.CAN-18-0359 PubMed
Shang C, Hong Y, Guo Y, Liu YH, Xue YX (2014) MiR-210 up-regulation inhibits proliferation and induces apoptosis in glioma cells by targeting SIN3A. Med Sci Monit 20:2571–2577. 10.12659/MSM.892994 PubMed PMC
Chen S, Zhang D (2015) Friend or foe: endoplasmic reticulum protein 29 (ERp29) in epithelial cancer. FEBS Open Bio 5:91–98. 10.1016/j.fob.2015.01.004 PubMed PMC
Colom B, Herms A, Hall MWJ et al (2021) Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 598(7881):510–514. 10.1038/s41586-021-03965-7 PubMed PMC
Toyoshima-Sasatani M, Imura F, Hamatake Y, Fukunaga A, Negishi T (2023) Mutation and apoptosis are well-coordinated for protecting against DNA damage-inducing toxicity in Drosophila. Genes Environ 45(1):11. 10.1186/s41021-023-00267-4 PubMed PMC
Rahal Z, Sinjab A, Wistuba II, Kadara H (2022) Game of clones: battles in the field of carcinogenesis. Pharmacol Ther 237:108251. 10.1016/j.pharmthera.2022.108251 PubMed PMC
Kurogi S, Hijiya N, Hidano S et al (2021) Downregulation of ZNF395 drives progression of pancreatic ductal adenocarcinoma through enhancement of growth potential. Pathobiology 88(5):374–382. 10.1159/000514593 PubMed
Jordanovski D, Herwartz C, Pawlowski A, Taute S, Frommolt P, Steger G (2013) The hypoxia-inducible transcription factor ZNF395 is controlled by IkB kinase-signaling and activates genes involved in the innate immune response and cancer. PLoS ONE 8(9):e74911. 10.1371/journal.pone.0074911 PubMed PMC
Pang F, Zha R, Zhao Y et al (2014) MiR-525-3p enhances the migration and invasion of liver cancer cells by downregulating ZNF395. PLoS ONE 9(3):e90867. 10.1371/journal.pone.0090867 PubMed PMC
Cai Y, Crowther J, Pastor T et al (2016) Loss of chromosome 8p governs Tumor Progression and Drug Response by altering lipid metabolism. Cancer Cell 29(5):751–766. 10.1016/j.ccell.2016.04.003 PubMed
Boeckle S, Pfister H, Steger G (2002) A new cellular factor recognizes E2 binding sites of papillomaviruses which mediate transcriptional repression by E2. Virology 293(1):103–117. 10.1006/viro.2001.1231 PubMed
Sichtig N, Korfer N, Steger G (2007) Papillomavirus binding factor binds to SAP30 and represses transcription via recruitment of the HDAC1 co-repressor complex. Arch Biochem Biophys 467(1):67–75. 10.1016/j.abb.2007.08.015 PubMed