Training artificial neural networks using self-organizing migrating algorithm for skin segmentation

. 2024 Sep 30 ; 14 (1) : 22651. [epub] 20240930

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39349534

Grantová podpora
SGS No. SP2024/008 VSB-Technical University of Ostrava
CZ.10.03.01/00/22-003/0000048 European Union under the REFRESH-Research Excellence For Region Sustainability and High-tech Industries via the Operational Programme Just Transition

Odkazy

PubMed 39349534
PubMed Central PMC11443081
DOI 10.1038/s41598-024-72884-0
PII: 10.1038/s41598-024-72884-0
Knihovny.cz E-zdroje

This study presents an application of the self-organizing migrating algorithm (SOMA) to train artificial neural networks for skin segmentation tasks. We compare the performance of SOMA with popular gradient-based optimization methods such as ADAM and SGDM, as well as with another evolutionary algorithm, differential evolution (DE). Experiments are conducted on the skin dataset, which consists of 245,057 samples with skin and non-skin labels. The results show that the neural network trained by SOMA achieves the highest accuracy (93.18%), outperforming ADAM (84.87%), SGDM (84.79%), and DE (91.32%). The visual evaluation also reveals the SOMA-trained neural network's accurate and reliable segmentation capabilities in most cases. These findings highlight the potential of incorporating evolutionary optimization algorithms like SOMA into the training process of artificial neural networks, significantly improving performance in image segmentation tasks.

Zobrazit více v PubMed

Chen, H., Geng, L., Zhao, H., Zhao, C. & Liu, A. Image recognition algorithm based on artificial intelligence. Neural Comput. Appl.10.1007/s00521-021-06058-8 (2022). PubMed

Smith, T. B., Vacca, R., Mantegazza, L. & Capua, I. Natural language processing and network analysis provide novel insights on policy and scientific discourse around sustainable development goals. Sci. Rep.11, 22427. 10.1038/s41598-021-01801-6 (2021). PubMed PMC

Bilal, A. et al. Bc-qnet: A quantum-infused elm model for breast cancer diagnosis. Comput. Biol. Med.175, 108483. 10.1016/j.compbiomed.2024.108483 (2024). PubMed

Bilal, A. et al. Breast cancer diagnosis using support vector machine optimized by improved quantum inspired grey wolf optimization. Sci. Rep.14, 10714. 10.1038/s41598-024-61322-w (2024). PubMed PMC

Khan, A. Q. et al. A novel fusion of genetic grey wolf optimization and kernel extreme learning machines for precise diabetic eye disease classification. PLoS ONE19, 1–45. 10.1371/journal.pone.0303094 (2024). PubMed PMC

Bilal, A., Liu, X., Shafiq, M., Ahmed, Z. & Long, H. Nimeq-sacnet: A novel self-attention precision medicine model for vision-threatening diabetic retinopathy using image data. Comput. Biol. Med.171, 108099. 10.1016/j.compbiomed.2024.108099 (2024). PubMed

Bilal, A. et al. Advanced ckd detection through optimized metaheuristic modeling in healthcare informatics. Sci. Rep.14, 12601. 10.1038/s41598-024-63292-5 (2024). PubMed PMC

Del Ser, J. et al. Bio-inspired computation: Where we stand and what’s next. Swarm Evol. Comput.48, 220–250. 10.1016/j.swevo.2019.04.008 (2019).

Bilal, A., Sun, G., Mazhar, S. & Imran, A. Improved grey wolf optimization-based feature selection and classification using cnn for diabetic retinopathy detection. In Evolutionary Computing and Mobile Sustainable Networks (eds Suma, V. et al.) 1–14 (Springer Singapore, Singapore, 2022). 10.1007/978-981-16-9605-3_1.

Bilal, A., Sun, G., Li, Y., Mazhar, S. & Latif, J. Lung nodules detection using grey wolf optimization by weighted filters and classification using cnn. J. Chin. Inst. Eng.45, 175–186. 10.1080/02533839.2021.2012525 (2022).

Zhang, J., Sun, G., Sun, Y., Dou, H. & Bilal, A. Hyper-parameter optimization by using the genetic algorithm for upper limb activities recognition based on neural networks. IEEE Sens. J.21, 1877–1884. 10.1109/JSEN.2020.3018629 (2021).

Zelinka, I. Soma-self-organizing migrating algorithm. Self-Organ. Migr. Algorithm Methodol. Implement.[SPACE]10.1007/978-3-319-28161-2_1 (2016).

Li, J., Dong, X., Ruan, S. & Shi, L. A parallel integrated learning technique of improved particle swarm optimization and bp neural network and its application. Sci. Rep.12, 19325. 10.1038/s41598-022-21463-2 (2022). PubMed PMC

Mahapatra, A. K., Panda, N. & Pattanayak, B. K. Hybrid pso (sgpso) with the incorporation of discretization operator for training rbf neural network and optimal feature selection. Arab. J. Sci. Eng.48, 9991–10019. 10.1007/s13369-022-07408-x (2023).

Waqas, U., Ahmed, M. F., Rashid, H. M. A. & Al-Atroush, M. E. Optimization of neural-network model using a meta-heuristic algorithm for the estimation of dynamic poisson’s ratio of selected rock types. Sci. Rep.13, 11089. 10.1038/s41598-023-38163-0 (2023). PubMed PMC

Agahian, S. & Akan, T. Battle royale optimizer for training multi-layer perceptron. Evol. Syst.13, 563–575. 10.1007/s12530-021-09401-5 (2022).

Chauhan, D., Yadav, A. & Neri, F. A multi-agent optimization algorithm and its application to training multilayer perceptron models. Evol. Syst.[SPACE]10.1007/s12530-023-09518-9 (2023).

Chatterjee, R., Mukherjee, R., Roy, P. K. & Pradhan, D. K. Chaotic oppositional-based whale optimization to train a feed forward neural network. Soft. Comput.26, 12421–12443. 10.1007/s00500-022-07141-5 (2022).

Ansari, A., Ahmad, I. S., Bakar, A. A. & Yaakub, M. R. A hybrid metaheuristic method in training artificial neural network for bankruptcy prediction. IEEE Access8, 176640–176650. 10.1109/ACCESS.2020.3026529 (2020).

Mahdi, Q. A. M. N. et al. Training learning weights of elman neural network using salp swarm optimization algorithm. Procedia Computer Science 225, 1974–1986, 10.1016/j.procs.2023.10.188 (2023). note27th International Conference on Knowledge Based and Intelligent Information and Engineering Sytems (KES 2023).

Khan, A. Q., Sun, G., Li, Y., Bilal, A. & Manan, M. A. Optimizing fully convolutional encoder-decoder network for segmentation of diabetic eye disease. Comput. Mater. Continua 77, 2481–2504, 10.32604/cmc.2023.043239 (2023).

Zelinka, I. & Jouni, L. SOMA–self-organizing migrating algorithm mendel. In 6th International Conference on Soft Computing, Brno, Czech Republic (2000).

Zelinka, I. SOMA–Self-Organizing Migrating Algorithm 167–217 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004).

Bhatt, R. & Dhall, A. Skin segmentation. UCI Mach. Learn. Repos., 10.24432/C5T30C (2012).

Storn, R. & Price, K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim.11, 341–359. 10.1023/A:1008202821328 (1997).

Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw.12, 145–151. 10.1016/S0893-6080(98)00116-6 (1999). PubMed

Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.698010.48550/arXiv.1412.6980 (2014).

Zhang, Z., Song, Y. & Qi, H. Age progression/regression by conditional adversarial autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 10.48550/arXiv.1702.08423 (organizationIEEE, 2017).

Derrac, J., García, S., Molina, D. & Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.1, 3–18. 10.1016/j.swevo.2011.02.002 (2011).

Carrasco, J., García, S., Rueda, M., Das, S. & Herrera, F. Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: Practical guidelines and a critical review. Swarm Evol. Comput.54, 100665. 10.1016/j.swevo.2020.100665 (2020).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...