• This record comes from PubMed

A fast all-optical 3D photoacoustic scanner for clinical vascular imaging

. 2025 May ; 9 (5) : 638-655. [epub] 20240930

Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
Wellcome Trust - United Kingdom

Links

PubMed 39349585
PubMed Central PMC12092260
DOI 10.1038/s41551-024-01247-x
PII: 10.1038/s41551-024-01247-x
Knihovny.cz E-resources

The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.

See more in PubMed

James, W. D., Elston, D., Treat, J. R. & Rosenbach, M. A. Andrews’ Diseases of the Skin: Clinical Dermatology 13th edn (Elsevier, 2019).

Chao, C. Y. L. & Cheing, G. L. Y. Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes Metab. Res. Rev.25, 604–614 (2009). PubMed

Paul, D. W. et al. Noninvasive imaging technologies for cutaneous wound assessment: a review. Wound Repair Regen.23, 149–162 (2015). PubMed

Allen, J. & Howell, K. Microvascular imaging: techniques and opportunities for clinical physiological measurements. Physiol. Meas.35, R91–R141 (2014). PubMed

Deegan, A. J. & Wang, R. K. Microvascular imaging of the skin. Phys. Med. Biol.64, 07TR01 (2019). PubMed PMC

Tanter, M. & Fink, M. Ultrafast imaging in biomedical ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control61, 102–119 (2014). PubMed

Soloukey, S. et al. Functional ultrasound (fUS) during awake brain surgery: the clinical potential of intra-operative functional and vascular brain mapping. Front. Neurosci.13, 1384 (2020). PubMed PMC

Beard, P. Biomedical photoacoustic imaging. Interface Focus1, 602–631 (2011). PubMed PMC

Su, R., Ermilov, S., Liopo, A. & Oraevsky, A. Laser optoacoustic tomography: towards new technology for biomedical diagnostics. Nucl. Instrum. Methods Phys. Res. A720, 58–61 (2013). PubMed PMC

Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods13, 627–638 (2016). PubMed PMC

Taruttis, A., van Dam, G. M. & Ntziachristos, V. Mesoscopic and macroscopic optoacoustic imaging of cancer. Cancer Res.75, 1548–1559 (2015). PubMed

Li, D., Humayun, L., Vienneau, E., Vu, T. & Yao, J. Seeing through the skin: photoacoustic tomography of skin vasculature and beyond. JID Innov.1, 100039 (2021). PubMed PMC

Li, M., Tang, Y. & Yao, J. Photoacoustic tomography of blood oxygenation: a mini review. Photoacoustics10, 65–73 (2018). PubMed PMC

Lin, L. & Wang, L. V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol.19, 365–384 (2022). PubMed

Valluru, K. S., Wilson, K. E. & Willmann, J. K. Photoacoustic imaging in oncology: translational preclinical and early clinical experience. Radiology280, 332–349 (2016). PubMed PMC

Karlas, A. et al. Cardiovascular optoacoustics: from mice to men – a review. Photoacoustics14, 19–30 (2019). PubMed PMC

Karlas, A. et al. Multispectral optoacoustic tomography of peripheral arterial disease based on muscle hemoglobin gradients—a pilot clinical study. Ann. Transl. Med.9, 36–36 (2021). PubMed PMC

Yang, J. et al. Detecting hemodynamic changes in the foot vessels of diabetic patients by photoacoustic tomography. J. Biophotonics13, e202000011 (2020). PubMed

Karlas, A. et al. Dermal features derived from optoacoustic tomograms via machine learning correlate microangiopathy phenotypes with diabetes stage. Nat. Biomed. Eng.7, 1667–1682 (2023). PubMed PMC

Zabihian, B. et al. In vivo dual-modality photoacoustic and optical coherence tomography imaging of human dermatological pathologies. Biomed. Opt. Express6, 3163–3178 (2015). PubMed PMC

van den Berg, P. J., Daoudi, K., Bernelot Moens, H. J. & Steenbergen, W. Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system. Photoacoustics8, 8–14 (2017). PubMed PMC

Jo, J. et al. Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection. Photoacoustics12, 82–89 (2018). PubMed PMC

Rajian, J. R., Shao, X., Chamberland, D. L. & Wang, X. Characterization and treatment monitoring of inflammatory arthritis by photoacoustic imaging: a study on adjuvant-induced arthritis rat model. Biomed. Opt. Express4, 900–908 (2013). PubMed PMC

Nam, S. Y., Chung, E., Suggs, L. J. & Emelianov, S. Y. Combined ultrasound and photoacoustic imaging to noninvasively assess burn injury and selectively monitor a regenerative tissue-engineered construct. Tissue Eng. C Methods21, 557–566 (2015). PubMed PMC

Mantri, Y., Mishra, A., Anderson, C. A. & Jokerst, J. V. Photoacoustic imaging to monitor outcomes during hyperbaric oxygen therapy: validation in a small cohort and case study in a bilateral chronic ischemic wound. Biomed. Opt. Express13, 5683–5694 (2022). PubMed PMC

Deán-Ben, X. L. & Razansky, D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt. Express21, 28062–28071 (2013). PubMed

Zhang, H. F., Maslov, K., Stoica, G. & Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol.24, 848–851 (2006). PubMed

Aguirre, J. et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng.1, 0068 (2017).

Tadayon, M. A., Baylor, M. & Ashkenazi, S. Polymer waveguide Fabry–Perot resonator for high-frequency ultrasound detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control61, 2132–2138 (2014). PubMed

Preisser, S. et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging. Biomed. Opt. Express7, 4171–4186 (2016). PubMed PMC

Hajireza, P., Krause, K., Brett, M. & Zemp, R. Glancing angle deposited nanostructured film Fabry–Perot etalons for optical detection of ultrasound. Opt. Express21, 6391–6400 (2013). PubMed

Guggenheim, J. A. et al. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics11, 714–719 (2017).

Li, H., Dong, B., Zhang, Z., Zhang, H. F. & Sun, C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci. Rep.4, 4496 (2014). PubMed PMC

Shnaiderman, R. et al. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature585, 372–378 (2020). PubMed

Westerveld, W. J. et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photonics15, 341–345 (2021).

Harary, T., Hazan, Y. & Rosenthal, A. All-optical optoacoustic micro-tomography in reflection mode. Biomed. Eng. Lett.13, 475–483 (2023). PubMed PMC

Zhang, E., Laufer, J. & Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry–Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt.47, 561–577 (2008). PubMed

Laufer, J. et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt.17, 056016 (2012). PubMed

Johnson, S. P., Ogunlade, O., Lythgoe, M. F., Beard, P. & Pedley, R. B. Longitudinal photoacoustic imaging of the pharmacodynamic effect of vascular targeted therapy on tumors. Clin. Cancer Res.25, 7436–7448 (2019). PubMed PMC

Ogunlade, O. et al. In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models. Am. J. Physiol. Ren. Physiol.314, F1145–F1153 (2018). PubMed

Huynh, N., Ogunlade, O., Zhang, E., Cox, B. & Beard, P. Photoacoustic imaging using an 8-beam Fabry–Perot scanner>. In Proc. SPIE 9708, Photons Plus Ultrasound (eds Oraevsky, A. A. & Wang, L. V.) 97082L (SPIE, 2016).

Plumb, A. A., Huynh, N. T., Guggenheim, J., Zhang, E. & Beard, P. Rapid volumetric photoacoustic tomographic imaging with a Fabry–Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli. Eur. Radiol.28, 1037–1045 (2018). PubMed PMC

Jathoul, A. P. et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics9, 239–246 (2015).

Märk, J. et al. Dual-wavelength 3D photoacoustic imaging of mammalian cells using a photoswitchable phytochrome reporter protein. Commun. Phys.1, 3 (2018).

Ma, X., Fan, M., Cai, Y., Xu, L. & Ma, J. A Fabry–Perot fiber-optic array for photoacoustic imaging. IEEE Trans. Instrum. Meas.71, 4501508 (2022).

Saucourt, J., Moreau, A., Lumeau, J., Rigneault, H. & Chaigne, T. Fast interrogation wavelength tuning for all-optical photoacoustic imaging. Opt. Express31, 11164–11172 (2023). PubMed

Cox, B. T. & Beard, P. C. The frequency-dependent directivity of a planar Fabry–Perot polymer film ultrasound sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control54, 394–404 (2007). PubMed

Morris, P., Hurrell, A., Shaw, A., Zhang, E. & Beard, P. A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J. Acoust. Soc. Am.125, 3611–3622 (2009). PubMed

Allen, T. J. et al. High pulse energy fibre laser as an excitation source for photoacoustic tomography. Opt. Express28, 34255–34265 (2020). PubMed

Arridge, S. R. et al. Accelerated high-resolution photoacoustic tomography via compressed sensing. Phys. Med. Biol.61, 8908–8940 (2016). PubMed

Köstli, K. P., Frenz, M., Bebie, H. & Weber, H. P. Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol.46, 1863–1872 (2001). PubMed

Caggiati, A., Phillips, M., Lametschwandtner, A. & Allegra, C. Valves in small veins and venules. Eur. J. Vasc. Endovasc. Surg.32, 447–452 (2006). PubMed

Pu, K. et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol.9, 233–239 (2014). PubMed PMC

De Angelis, R., Grassi, W. & Cutolo, M. A growing need for capillaroscopy in rheumatology. Arthritis Rheum.61, 405–410 (2009). PubMed

Ingegnoli, F. et al. Prognostic model based on nailfold capillaroscopy for identifying Raynaud’s phenomenon patients at high risk for the development of a scleroderma spectrum disorder: PRINCE (Prognostic Index for Nailfold Capillaroscopic Examination). Arthritis Rheum.58, 2174–2182 (2008). PubMed

Haltmeier et al. Compressed sensing and sparsity in photoacoustic tomography. J. Opt.18, 114004–114012 (2016).

Antholzer, S., Haltmeier, M. & Schwab, J. Deep learning for photoacoustic tomography from sparse data. Inverse Prob. Sci. Eng.27, 987–1005 (2019). PubMed PMC

Davoudi, N., Deán-Ben, X. L. & Razansky, D. Deep learning optoacoustic tomography with sparse data. Nat. Mach. Intell.1, 453–460 (2019).

Özbek, A., Deán-Ben, X. L. & Razansky, D. Optoacoustic imaging at kilohertz volumetric frame rates. Optica5, 857–863 (2018). PubMed PMC

Hauptmann, A. & Cox, B. Deep learning in photoacoustic tomography: current approaches and future directions. J. Biomed. Opt.25, 112903 (2020).

Pan, B. & Betcke, M. M. On learning the invisible in photoacoustic tomography with flat directionally sensitive detector. SIAM J. Imag. Sci.16, 770–801 (2023).

Roustit, M. & Cracowski, J.-L. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol. Sci.34, 373–384 (2013). PubMed

Rossi, M. et al. Peripheral microvascular dysfunction as an independent predictor of atherosclerotic damage in type 1 diabetes patients: a preliminary study. Clin. Hemorheol. Microcirc.54, 381–391 (2013). PubMed

Belch, J. J. et al. Critical issues in peripheral arterial disease detection and management: a call to action. Arch. Intern. Med.163, 884–892 (2003). PubMed

Han, H.-C. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res.49, 185–197 (2012). PubMed PMC

Owen, C. G. et al. Diabetes and the tortuosity of vessels of the bulbar conjunctiva. Ophthalmology115, e27–e32 (2008). PubMed

Ciurică, S. et al. Arterial tortuosity. Hypertension73, 951–960 (2019). PubMed

Almutairi, K. B., Nossent, J. C., Preen, D. B., Keen, H. I. & Inderjeeth, C. A. The prevalence of rheumatoid arthritis: a systematic review of population-based Studies. J. Rheumatol.48, 669–676 (2021). PubMed

Wiacek, A. & Lediju Bell, M. A. Photoacoustic-guided surgery from head to toe [Invited]. Biomed. Opt. Express12, 2079–2117 (2021). PubMed PMC

Ansari, R., Zhang, E. Z., Desjardins, A. E. & Beard, P. C. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy. Light. Sci. Appl.7, 75 (2018). PubMed PMC

Ansari, R., Zhang, E., Desjardins, A. & Beard, P. Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance. Opt. Lett.45, 6238–6241 (2020). PubMed PMC

Ansari, R., Zhang, E. & Beard, P. Dual-modality rigid endoscope for photoacoustic imaging and white light videoscopy. J. Biomed. Opt.29, 020502 (2024). PubMed PMC

Lamont, M. & Beard, P. 2D imaging of ultrasound fields using CCD array to map output of Fabry–Perot polymer film sensor. Electron. Lett.42, 7–8 (2006).

Sievers, J., Villringer, C., Lebek, W., Gilani, T. & Laufer, J. Photoacoustic tomography using a Fabry–Perot sensor with homogeneous optical thickness and wide-field camera-based detection. In Opto-Acoustic Methods and Applications in Biophotonics VI (eds Zemp, R. J. et al.) 126310P (SPIE, 2023).

Zhang, E. Z. & Beard, P. C. A miniature all-optical photoacoustic imaging probe. In Proc. SPIE, Photons Plus Ultrasound Vol. 7899 (eds Oraevsky, A. A. & Wang, L. V.) 78991F (SPIE, 2011).

Zhang, E. Z. et al. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging. Biomed. Opt. Express2, 2202–2215 (2011). PubMed PMC

Pham, K. et al. Broadband all-optical plane-wave ultrasound imaging system based on a Fabry–Perot scanner. IEEE Trans. Ultrason. Ferroelectr. Freq. Control68, 1007–1016 (2021). PubMed

Yasuda, H. Plasma Polymerisation (Academic Press, 1985).

Treeby, B. E., Jaros, J. & Cox, B. T. Advanced photoacoustic image reconstruction using the k-Wave toolbox. In Proc. SPIE, Photons Plus Ultrasound Vol. 9708 (eds Oraevsky, A. A. & Wang, L. V.) 97082P (SPIE, 2016).

Treeby, B. E., Varslot, T. K., Zhang, E. Z., Laufer, J. G. & Beard, P. C. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. J. Biomed. Opt.16, 090501 (2011). PubMed

Treeby, B. E. & Cox, B. T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt.15, 021314 (2010). PubMed

Arthur, D. & Vassilvitskii, S. K-means++: the advantages of careful seeding. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms 1027–1035 (Society for Industrial and Applied Mathematics, 2007).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...