Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison

. 2024 Oct 15 ; 96 (41) : 16215-16226. [epub] 20241001

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39353203

Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor-IE and MLR-IE). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor-IE approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.

Acquedotto Pugliese SpA Direzione Laboratori e Controllo Igienico Sanitario 70123 Bari Italy

Agenzia Regionale per l'Ambiente Toscana Via G Marradi 114 57126 Livorno Italy

Analytical Chemistry Group Department of Plant and Environmental Sciences University of Copenhagen Thorvaldsenvej 40 1871 Frederiksberg Denmark

Analytisches Forschungsinstitut für Non Target Screening GmbH Am Mittleren Moos 48 86167 Augsburg Germany

Bavarian Environment Agency Bürgermeister Ulrich Str 160 86179 Augsburg Germany

BRGM 3 avenue Claude Guillemin BP36009 45060 Orléans Cedex 2 France

Center for Omics Sciences IRCCS San Raffaele Scientific Institute 20132 Milan Italy

Department for Organic Environmental Chemistry Helmholtz Centre Hereon Max Planck Str 1 21502 Geesthacht Germany

Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences 75007 Uppsala Sweden

Department of Chemistry University of Bath Bath BA2 7AY U K

Department of Chemistry Vienna BOKU University Muthgasse 18 1190 Vienna Austria

Department of Environmental Health Sciences Yale School of Public Health Yale University New Haven Connecticut 06510 United States

Department of Environmental Science Stockholm University Svante Arrhenius väg 8 11418 Stockholm Sweden

Department of Materials and Environmental Chemistry Stockholm University Svante Arrhenius väg 16 11418 Stockholm Sweden

Eawag Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 8600 Dübendorf Switzerland

Environmental and Public Health Analytical Chemistry Research Institute for Pesticides and Water University Jaume 1 12006 Castelló Spain

Environmental Institute Okružná 784 42 97241 Koš Slovak Republic

Environmental Metabolomics Lab Aarhus University Frederiksborgsvej 399 4000 Roskilde Denmark

Het Waterlaboratorium J W Lucasweg 2 2031 BE Haarlem The Netherlands

Human Exposure to Organic Pollutants Unit Institute of Environmental Assessment and Water Research C Jordi Girona 18 26 ES 08034 Barcelona Spain

IBED Environmental Chemistry and Mass Spectrometry Laboratories University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands

Institute for Analytical Research Hochschulen Fresenius gem Trägergesellschaft mbH 65510 Idstein Germany

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam 1012 WP Amsterdam Netherlands

Institute for Sustainability Bath BA2 7AY U K

KWR Water Research Institute Groningenhaven 7 3433 PE Nieuwegein The Netherlands

Laboratory for Operation Control and Research Zweckverband Landeswasserversorgung Am Spitzigen Berg 1 89129 Langenau Germany

Laboratory of Analytical Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis Zografou 15771 Athens Greece

LEESU Univ Paris Est Creteil Ecole des Ponts F 94010 Creteil France

Luxembourg Centre for Systems Biomedicine University of Luxembourg 6 Avenue du Swing L 4367 Belvaux Luxembourg

Ministry of Infrastructure and Water Management Rijkswaterstaat Laboratory Zuiderwagenplein 2 8224 AD Lelystad The Netherlands

NILU Instituttveien 18 2007 Kjeller Norway

Quantem Analytics 51008 Tartu Estonia

Queensland Alliance for Environmental Health Sciences The University of Queensland Woolloongabba Queensland 4102 Australia

RECETOX Faculty of Science Masaryk University Kamenice 753 5 Building D29 62500 Brno Czech Republic

Research Institute for Geo Hydrological Protection Via Amendola 122 1 70126 Bari Italy

SUEZ CIRSEE 38 rue du president Wilson 78230 Le Pecq France

T G Masaryk Water Research Institute p r i Macharova 5 70200 Ostrava Czech Republic

Toxicological Centre University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium

Univ Paris Est Creteil CNRS OSU EFLUVE F 94010 Creteil France

Universite Claude Bernard Lyon 1 CNRS ISA UMR5280 5 rue de la Doua F 69100 Villeurbanne France

US National Institute of Standards and Technology 331 Fort Johnson Rd 29412 Charleston South Carolina United States

VEOLIA Recherche et Innovation Chemin de la Digue 78600 Maisons Laffitte France

Vlaamse Milieumaatschappij Raymonde de Larochelaan 1 9051 Gent Sint Denijs Westerem Belgium

Water Environmental and Food Chemistry Unit Institute of Environmental Assessment and Water Research C Jordi Girona 18 26 ES 08034 Barcelona Spain

Water Research Institute via del Mulino 19 20861 Brugherio MB Italy

Water Research Institute Via F De Blasio 5 70132 Bari Italy

White Lab Srl Via Mons Rodolfi 22 36022 San Giuseppe de Cassola Italy

WLN Rijksstraatweg 85 9756 AD Glimmen Groningen The Netherlands

Zobrazit více v PubMed

WHO . Strong Systems and Sound Investments: Evidence on and Key Insights into Accelerating Progress on Sanitation, Drinking-Water and Hygiene. In The UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2022 Report; World Health Organization: Geneva, 2022.

United Nations . The Sustainable Development Goals Report 2022; United Nations Department of Economic and Social Affairs (DESA): New York, 2022.

European Environment Agency . Europe’s Groundwater: A Key Resource under Pressure; Publications Office: LU, 2022.

Been F.; Kruve A.; Vughs D.; Meekel N.; Reus A.; Zwartsen A.; Wessel A.; Fischer A.; ter Laak T.; Brunner A. M. Risk-Based Prioritization of Suspects Detected in Riverine Water Using Complementary Chromatographic Techniques. Water Res. 2021, 204, 11761210.1016/j.watres.2021.117612. PubMed DOI

Fang W.; Peng Y.; Muir D.; Lin J.; Zhang X. A Critical Review of Synthetic Chemicals in Surface Waters of the US, the EU and China. Environ. Int. 2019, 131, 10499410.1016/j.envint.2019.104994. PubMed DOI

Wang Z.; Walker G. W.; Muir D. C. G.; Nagatani-Yoshida K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54 (5), 2575–2584. 10.1021/acs.est.9b06379. PubMed DOI

Kümmerer K.; Dionysiou D. D.; Olsson O.; Fatta-Kassinos D. A Path to Clean Water. Science 2018, 361 (6399), 222–224. 10.1126/science.aau2405. PubMed DOI

Albergamo V.; Schollée J. E.; Schymanski E. L.; Helmus R.; Timmer H.; Hollender J.; De Voogt P. Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environ. Sci. Technol. 2019, 53 (13), 7584–7594. 10.1021/acs.est.9b01750. PubMed DOI PMC

McCord J. P.; Groff L. C.; Sobus J. R. Quantitative Non-Targeted Analysis: Bridging the Gap between Contaminant Discovery and Risk Characterization. Environ. Int. 2022, 158, 10701110.1016/j.envint.2021.107011. PubMed DOI PMC

Luo Y.; Guo W.; Ngo H. H.; Nghiem L. D.; Hai F. I.; Zhang J.; Liang S.; Wang X. C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. 10.1016/j.scitotenv.2013.12.065. PubMed DOI

Brack W.; Barcelo Culleres D.; Boxall A. B. A.; Budzinski H.; Castiglioni S.; Covaci A.; Dulio V.; Escher B. I.; Fantke P.; Kandie F.; Fatta-Kassinos D.; Hernández F. J.; Hilscherová K.; Hollender J.; Hollert H.; Jahnke A.; Kasprzyk-Hordern B.; Khan S. J.; Kortenkamp A.; Kümmerer K.; Lalonde B.; Lamoree M. H.; Levi Y.; Lara Martín P. A.; Montagner C. C.; Mougin C.; Msagati T.; Oehlmann J.; Posthuma L.; Reid M.; Reinhard M.; Richardson S. D.; Rostkowski P.; Schymanski E.; Schneider F.; Slobodnik J.; Shibata Y.; Snyder S. A.; Fabriz Sodré F.; Teodorovic I.; Thomas K. V.; Umbuzeiro G. A.; Viet P. H.; Yew-Hoong K. G.; Zhang X.; Zuccato E. One Planet: One Health. A Call to Support the Initiative on a Global Science–Policy Body on Chemicals and Waste. Environ. Sci. Eur. 2022, 34 (1), 21.10.1186/s12302-022-00602-6. PubMed DOI PMC

Kiefer K.; Müller A.; Singer H.; Hollender J. New Relevant Pesticide Transformation Products in Groundwater Detected Using Target and Suspect Screening for Agricultural and Urban Micropollutants with LC-HRMS. Water Res. 2019, 165, 11497210.1016/j.watres.2019.114972. PubMed DOI

Brunner A. M.; Vughs D.; Siegers W.; Bertelkamp C.; Hofman-Caris R.; Kolkman A.; Ter Laak T. Monitoring Transformation Product Formation in the Drinking Water Treatments Rapid Sand Filtration and Ozonation. Chemosphere 2019, 214, 801–811. 10.1016/j.chemosphere.2018.09.140. PubMed DOI

Senta I.; Kostanjevecki P.; Krizman-Matasic I.; Terzic S.; Ahel M. Occurrence and Behavior of Macrolide Antibiotics in Municipal Wastewater Treatment: Possible Importance of Metabolites, Synthesis Byproducts, and Transformation Products. Environ. Sci. Technol. 2019, 53 (13), 7463–7472. 10.1021/acs.est.9b01420. PubMed DOI

Gulde R.; Rutsch M.; Clerc B.; Schollée J. E.; Von Gunten U.; McArdell C. S. Formation of Transformation Products during Ozonation of Secondary Wastewater Effluent and Their Fate in Post-Treatment: From Laboratory- to Full-Scale. Water Res. 2021, 200, 11720010.1016/j.watres.2021.117200. PubMed DOI

Escher B. I.; Fenner K. Recent Advances in Environmental Risk Assessment of Transformation Products. Environ. Sci. Technol. 2011, 45 (9), 3835–3847. 10.1021/es1030799. PubMed DOI

Nika M.-C.; Aalizadeh R.; Thomaidis N. S. Non-Target Trend Analysis for the Identification of Transformation Products during Ozonation Experiments of Citalopram and Four of Its Biodegradation Products. J. Hazard. Mater. 2021, 419, 12640110.1016/j.jhazmat.2021.126401. PubMed DOI

Kimura S. Y.; Cuthbertson A. A.; Byer J. D.; Richardson S. D. The DBP Exposome: Development of a New Method to Simultaneously Quantify Priority Disinfection by-Products and Comprehensively Identify Unknowns. Water Res. 2019, 148, 324–333. 10.1016/j.watres.2018.10.057. PubMed DOI

Richardson S. D.; Ternes T. A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2022, 94 (1), 382–416. 10.1021/acs.analchem.1c04640. PubMed DOI

Noguera-Oviedo K.; Aga D. S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. J. Hazard. Mater. 2016, 316, 242–251. 10.1016/j.jhazmat.2016.04.058. PubMed DOI

Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union 2006, 372 (19), 13.

DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2013, 226 (1), 1–17.

DIRECTIVE (EU) 2020/2184 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2020 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 2020, 435 (1), 62.

Feng X.; Sun H.; Liu X.; Zhu B.; Liang W.; Ruan T.; Jiang G. Occurrence and Ecological Impact of Chemical Mixtures in a Semiclosed Sea by Suspect Screening Analysis. Environ. Sci. Technol. 2022, 56 (15), 10681–10690. 10.1021/acs.est.2c00966. PubMed DOI

Krauss M.; Singer H.; Hollender J. LC–High Resolution MS in Environmental Analysis: From Target Screening to the Identification of Unknowns. Anal. Bioanal. Chem. 2010, 397 (3), 943–951. 10.1007/s00216-010-3608-9. PubMed DOI

Pérez-Fernández V.; Mainero Rocca L.; Tomai P.; Fanali S.; Gentili A. Recent Advancements and Future Trends in Environmental Analysis: Sample Preparation, Liquid Chromatography and Mass Spectrometry. Anal. Chim. Acta 2017, 983, 9–41. 10.1016/j.aca.2017.06.029. PubMed DOI

Hollender J.; Schymanski E. L.; Singer H. P.; Ferguson P. L. Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?. Environ. Sci. Technol. 2017, 51 (20), 11505–11512. 10.1021/acs.est.7b02184. PubMed DOI

Sousa J. C. G.; Ribeiro A. R.; Barbosa M. O.; Pereira M. F. R.; Silva A. M. T. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018, 344, 146–162. 10.1016/j.jhazmat.2017.09.058. PubMed DOI

Richardson S. D.; Ternes T. A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90 (1), 398–428. 10.1021/acs.analchem.7b04577. PubMed DOI

Richardson S. D.; Kimura S. Y. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2020, 92 (1), 473–505. 10.1021/acs.analchem.9b05269. PubMed DOI

Kruve A. Strategies for Drawing Quantitative Conclusions from Nontargeted Liquid Chromatography–High-Resolution Mass Spectrometry Analysis. Anal. Chem. 2020, 92 (7), 4691–4699. 10.1021/acs.analchem.9b03481. PubMed DOI

Schymanski E. L.; Jeon J.; Gulde R.; Fenner K.; Ruff M.; Singer H. P.; Hollender J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. 10.1021/es5002105. PubMed DOI

Bletsou A. A.; Jeon J.; Hollender J.; Archontaki E.; Thomaidis N. S. Targeted and Non-Targeted Liquid Chromatography-Mass Spectrometric Workflows for Identification of Transformation Products of Emerging Pollutants in the Aquatic Environment. TrAC, Trends Anal. Chem. 2015, 66, 32–44. 10.1016/j.trac.2014.11.009. DOI

Cech N. B.; Krone J. R.; Enke C. G. Predicting Electrospray Response from Chromatographic Retention Time. Anal. Chem. 2001, 73 (2), 208–213. 10.1021/ac0006019. PubMed DOI

Mayhew A. W.; Topping D. O.; Hamilton J. F. New Approach Combining Molecular Fingerprints and Machine Learning to Estimate Relative Ionization Efficiency in Electrospray Ionization. ACS Omega 2020, 5 (16), 9510–9516. 10.1021/acsomega.0c00732. PubMed DOI PMC

Golubović J.; Birkemeyer C.; Protić A.; Otašević B.; Zečević M. Structure–Response Relationship in Electrospray Ionization-Mass Spectrometry of Sartans by Artificial Neural Networks. J. Chromatogr. A 2016, 1438, 123–132. 10.1016/j.chroma.2016.02.021. PubMed DOI

Chalcraft K. R.; Lee R.; Mills C.; Britz-McKibbin P. Virtual Quantification of Metabolites by Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry: Predicting Ionization Efficiency Without Chemical Standards. Anal. Chem. 2009, 81 (7), 2506–2515. 10.1021/ac802272u. PubMed DOI

Oss M.; Kruve A.; Herodes K.; Leito I. Electrospray Ionization Efficiency Scale of Organic Compounds. Anal. Chem. 2010, 82 (7), 2865–2872. 10.1021/ac902856t. PubMed DOI

Ehrmann B. M.; Henriksen T.; Cech N. B. Relative Importance of Basicity in the Gas Phase and in Solution for Determining Selectivity in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 (5), 719–728. 10.1016/j.jasms.2008.01.003. PubMed DOI

Ojakivi M.; Liigand J.; Kruve A. Modifying the Acidity of Charged Droplets. ChemistrySelect 2018, 3 (1), 335–338. 10.1002/slct.201702269. DOI

Huffman B. A.; Poltash M. L.; Hughey C. A. Effect of Polar Protic and Polar Aprotic Solvents on Negative-Ion Electrospray Ionization and Chromatographic Separation of Small Acidic Molecules. Anal. Chem. 2012, 84 (22), 9942–9950. 10.1021/ac302397b. PubMed DOI

Kiontke A.; Oliveira-Birkmeier A.; Opitz A.; Birkemeyer C. Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration. PLoS One 2016, 11 (12), e016750210.1371/journal.pone.0167502. PubMed DOI PMC

Raji M. A.; Schug K. A. Chemometric Study of the Influence of Instrumental Parameters on ESI-MS Analyte Response Using Full Factorial Design. Int. J. Mass Spectrom. 2009, 279 (2–3), 100–106. 10.1016/j.ijms.2008.10.013. DOI

Kruve A.; Kiefer K.; Hollender J. Benchmarking of the Quantification Approaches for the Non-Targeted Screening of Micropollutants and Their Transformation Products in Groundwater. Anal. Bioanal. Chem. 2021, 413 (6), 1549–1559. 10.1007/s00216-020-03109-2. PubMed DOI PMC

Kalogiouri N. P.; Aalizadeh R.; Thomaidis N. S. Investigating the Organic and Conventional Production Type of Olive Oil with Target and Suspect Screening by LC-QTOF-MS, a Novel Semi-Quantification Method Using Chemical Similarity and Advanced Chemometrics. Anal. Bioanal. Chem. 2017, 409 (23), 5413–5426. 10.1007/s00216-017-0395-6. PubMed DOI

Pieke E. N.; Granby K.; Trier X.; Smedsgaard J. A Framework to Estimate Concentrations of Potentially Unknown Substances by Semi-Quantification in Liquid Chromatography Electrospray Ionization Mass Spectrometry. Anal. Chim. Acta 2017, 975, 30–41. 10.1016/j.aca.2017.03.054. PubMed DOI

Dahal U. P.; Jones J. P.; Davis J. A.; Rock D. A. Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates. Drug Metab. Dispos. 2011, 39 (12), 2355–2360. 10.1124/dmd.111.040865. PubMed DOI PMC

Solliec M.; Roy-Lachapelle A.; Storck V.; Callender K.; Greer C. W.; Barbeau B. A Data-Independent Acquisition Approach Based on HRMS to Explore the Biodegradation Process of Organic Micropollutants Involved in a Biological Ion-Exchange Drinking Water Filter. Chemosphere 2021, 277, 13021610.1016/j.chemosphere.2021.130216. PubMed DOI

Chibwe L.; Parrott J. L.; Shires K.; Khan H.; Clarence S.; Lavalle C.; Sullivan C.; O’Brien A. M.; De Silva A. O.; Muir D. C. G.; Rochman C. M. A Deep Dive into the Complex Chemical Mixture and Toxicity of Tire Wear Particle Leachate in Fathead Minnow. Environ. Toxicol. Chem. 2022, 41 (5), 1144–1153. 10.1002/etc.5140. PubMed DOI PMC

Panagopoulos Abrahamsson D.; Park J.-S.; Singh R. R.; Sirota M.; Woodruff T. J. Applications of Machine Learning to In Silico Quantification of Chemicals without Analytical Standards. J. Chem. Inf. Model. 2020, 60 (6), 2718–2727. 10.1021/acs.jcim.9b01096. PubMed DOI PMC

Liigand J.; Wang T.; Kellogg J.; Smedsgaard J.; Cech N.; Kruve A. Quantification for Non-Targeted LC/MS Screening without Standard Substances. Sci. Rep. 2020, 10 (1), 5808.10.1038/s41598-020-62573-z. PubMed DOI PMC

Aalizadeh R.; Panara A.; Thomaidis N. S. Development and Application of a Novel Semi-Quantification Approach in LC-QToF-MS Analysis of Natural Products. J. Am. Soc. Mass Spectrom. 2021, 32 (6), 1412–1423. 10.1021/jasms.1c00032. PubMed DOI

Aalizadeh R.; Nikolopoulou V.; Alygizakis N.; Slobodnik J.; Thomaidis N. S. A Novel Workflow for Semi-Quantification of Emerging Contaminants in Environmental Samples Analyzed by LC-HRMS. Anal. Bioanal. Chem. 2022, 414 (25), 7435–7450. 10.1007/s00216-022-04084-6. PubMed DOI

Palm E.; Kruve A. Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS. Molecules 2022, 27 (3), 1013.10.3390/molecules27031013. PubMed DOI PMC

Sepman H.; Malm L.; Peets P.; MacLeod M.; Martin J.; Breitholtz M.; Kruve A. Bypassing the Identification: MS2Quant for Concentration Estimations of Chemicals Detected with Nontarget LC-HRMS from MS 2 Data. Anal. Chem. 2023, 95 (33), 12329–12338. 10.1021/acs.analchem.3c01744. PubMed DOI PMC

Tadić Đ.; Manasfi R.; Bertrand M.; Sauvêtre A.; Chiron S. Use of Passive and Grab Sampling and High-Resolution Mass Spectrometry for Non-Targeted Analysis of Emerging Contaminants and Their Semi-Quantification in Water. Molecules 2022, 27 (10), 3167.10.3390/molecules27103167. PubMed DOI PMC

Malm L.; Palm E.; Souihi A.; Plassmann M.; Liigand J.; Kruve A. Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS. Molecules 2021, 26 (12), 3524.10.3390/molecules26123524. PubMed DOI PMC

Sepman H.; Malm L.; Peets P.; Kruve A. Scientometric Review: Concentration and Toxicity Assessment in Environmental Non-Targeted LC/HRMS Analysis. Trends Environ. Anal. Chem. 2023, 40, e0021710.1016/j.teac.2023.e00217. DOI

Hollender J.; Schymanski E. L.; Ahrens L.; Alygizakis N.; Béen F.; Bijlsma L.; Brunner A. M.; Celma A.; Fildier A.; Fu Q.; Gago-Ferrero P.; Gil-Solsona R.; Haglund P.; Hansen M.; Kaserzon S.; Kruve A.; Lamoree M.; Margoum C.; Meijer J.; Merel S.; Rauert C.; Rostkowski P.; Samanipour S.; Schulze B.; Schulze T.; Singh R. R.; Slobodnik J.; Steininger-Mairinger T.; Thomaidis N. S.; Togola A.; Vorkamp K.; Vulliet E.; Zhu L.; Krauss M. NORMAN Guidance on Suspect and Non-Target Screening in Environmental Monitoring. Environ. Sci. Eur. 2023, 35 (1), 75.10.1186/s12302-023-00779-4. DOI

Quantem Version 0.3, 2021. https://quantem.co/.

Aalizadeh R.Semi-Quantification of Emerging Pollutants Version 1.0.0, 2021. http://trams.chem.uoa.gr/semiquantification/.

Core R.. Team. R: A Language and Environment for Statistical Computing, 2021. https://www.R-project.org/ (accessed 2022-03-10).

DSFP Digital Sample Freezing Platform . NORMAN Semiquantitative trial 10.60930/f201–3y97. https://dsfp.norman-data.eu/dataset/ab6a8f98-3a1f-41d2-b136-002cd69b9f8c.

Alygizakis N. A.; Oswald P.; Thomaidis N. S.; Schymanski E. L.; Aalizadeh R.; Schulze T.; Oswaldova M.; Slobodnik J. NORMAN Digital Sample Freezing Platform: A European Virtual Platform to Exchange Liquid Chromatography High Resolution-Mass Spectrometry Data and Screen Suspects in “Digitally Frozen” Environmental Samples. TrAC, Trends Anal. Chem. 2019, 115, 129–137. 10.1016/j.trac.2019.04.008. DOI

Helmus R.; Van De Velde B.; Brunner A. M.; Ter Laak T. L.; Van Wezel A. P.; Schymanski E. L. patRoon 2.0: Improved Non-Target Analysis Workflowsincluding Automated Transformation Product Screening. JOSS 2022, 7 (71), 4029.10.21105/joss.04029. DOI

Peets P.; Wang W.-C.; MacLeod M.; Breitholtz M.; Martin J. W.; Kruve A. MS2Tox Machine Learning Tool for Predicting the Ecotoxicity of Unidentified Chemicals in Water by Nontarget LC-HRMS. Environ. Sci. Technol. 2022, 56 (22), 15508–15517. 10.1021/acs.est.2c02536. PubMed DOI PMC

NORMAN Network; Aalizadeh R.; Alygizakis N.; Schymanski E.; Slobodnik J.; Fischer S.; Cirka L.. S0 | SUSDAT | Merged NORMAN Suspect List: SusDat, 2022. 10.5281/ZENODO.2664077. DOI

Liigand P.; Liigand J.; Kaupmees K.; Kruve A. 30 Years of Research on ESI/MS Response: Trends, Contradictions and Applications. Anal. Chim. Acta 2021, 1152, 238117.10.1016/j.aca.2020.11.049. PubMed DOI

Groff L. C.; Grossman J. N.; Kruve A.; Minucci J. M.; Lowe C. N.; McCord J. P.; Kapraun D. F.; Phillips K. A.; Purucker S. T.; Chao A.; Ring C. L.; Williams A. J.; Sobus J. R. Uncertainty Estimation Strategies for Quantitative Non-Targeted Analysis. Anal. Bioanal. Chem. 2022, 414 (17), 4919–4933. 10.1007/s00216-022-04118-z. PubMed DOI PMC

Alygizakis N.; Lestremau F.; Gago-Ferrero P.; Gil-Solsona R.; Arturi K.; Hollender J.; Schymanski E. L.; Dulio V.; Slobodnik J.; Thomaidis N. S. Towards a Harmonized Identification Scoring System in LC-HRMS/MS Based Non-Target Screening (NTS) of Emerging Contaminants. TrAC, Trends Anal. Chem. 2023, 159, 11694410.1016/j.trac.2023.116944. DOI

Souihi A.; Mohai M. P.; Palm E.; Malm L.; Kruve A. MultiConditionRT: Predicting Liquid Chromatography Retention Time for Emerging Contaminants for a Wide Range of Eluent Compositions and Stationary Phases. J. Chromatogr. A 2022, 1666, 46286710.1016/j.chroma.2022.462867. PubMed DOI

Moriwaki H.; Tian Y.-S.; Kawashita N.; Takagi T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10 (1), 4.10.1186/s13321-018-0258-y. PubMed DOI PMC

Tisler S.; Kilpinen K.; Pattison D. I.; Tomasi G.; Christensen J. H. Quantitative Nontarget Analysis of CECs in Environmental Samples Can Be Improved by Considering All Mass Adducts. Anal. Chem. 2024, 96 (1), 229–237. 10.1021/acs.analchem.3c03791. PubMed DOI PMC

BP4NTA. BP4NTA: Data Processing And Analysis. Reference Content. https://nontargetedanalysis.org/reference-content/methods/data-processing-and-analysis/ (accessed 2024-08-26).

Renner G.; Reuschenbach M. Critical Review on Data Processing Algorithms in Non-Target Screening: Challenges and Opportunities to Improve Result Comparability. Anal. Bioanal. Chem. 2023, 415 (18), 4111–4123. 10.1007/s00216-023-04776-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...