Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39353203
PubMed Central
PMC11483430
DOI
10.1021/acs.analchem.4c02902
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor-IE and MLR-IE). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor-IE approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.
Acquedotto Pugliese SpA Direzione Laboratori e Controllo Igienico Sanitario 70123 Bari Italy
Agenzia Regionale per l'Ambiente Toscana Via G Marradi 114 57126 Livorno Italy
Bavarian Environment Agency Bürgermeister Ulrich Str 160 86179 Augsburg Germany
BRGM 3 avenue Claude Guillemin BP36009 45060 Orléans Cedex 2 France
Center for Omics Sciences IRCCS San Raffaele Scientific Institute 20132 Milan Italy
Department of Chemistry University of Bath Bath BA2 7AY U K
Department of Chemistry Vienna BOKU University Muthgasse 18 1190 Vienna Austria
Environmental Institute Okružná 784 42 97241 Koš Slovak Republic
Environmental Metabolomics Lab Aarhus University Frederiksborgsvej 399 4000 Roskilde Denmark
Het Waterlaboratorium J W Lucasweg 2 2031 BE Haarlem The Netherlands
Institute for Sustainability Bath BA2 7AY U K
KWR Water Research Institute Groningenhaven 7 3433 PE Nieuwegein The Netherlands
LEESU Univ Paris Est Creteil Ecole des Ponts F 94010 Creteil France
NILU Instituttveien 18 2007 Kjeller Norway
Quantem Analytics 51008 Tartu Estonia
RECETOX Faculty of Science Masaryk University Kamenice 753 5 Building D29 62500 Brno Czech Republic
Research Institute for Geo Hydrological Protection Via Amendola 122 1 70126 Bari Italy
SUEZ CIRSEE 38 rue du president Wilson 78230 Le Pecq France
T G Masaryk Water Research Institute p r i Macharova 5 70200 Ostrava Czech Republic
Toxicological Centre University of Antwerp Universiteitsplein 1 2610 Antwerp Belgium
Univ Paris Est Creteil CNRS OSU EFLUVE F 94010 Creteil France
Universite Claude Bernard Lyon 1 CNRS ISA UMR5280 5 rue de la Doua F 69100 Villeurbanne France
VEOLIA Recherche et Innovation Chemin de la Digue 78600 Maisons Laffitte France
Vlaamse Milieumaatschappij Raymonde de Larochelaan 1 9051 Gent Sint Denijs Westerem Belgium
Water Research Institute via del Mulino 19 20861 Brugherio MB Italy
Water Research Institute Via F De Blasio 5 70132 Bari Italy
White Lab Srl Via Mons Rodolfi 22 36022 San Giuseppe de Cassola Italy
WLN Rijksstraatweg 85 9756 AD Glimmen Groningen The Netherlands
Zobrazit více v PubMed
WHO . Strong Systems and Sound Investments: Evidence on and Key Insights into Accelerating Progress on Sanitation, Drinking-Water and Hygiene. In The UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2022 Report; World Health Organization: Geneva, 2022.
United Nations . The Sustainable Development Goals Report 2022; United Nations Department of Economic and Social Affairs (DESA): New York, 2022.
European Environment Agency . Europe’s Groundwater: A Key Resource under Pressure; Publications Office: LU, 2022.
Been F.; Kruve A.; Vughs D.; Meekel N.; Reus A.; Zwartsen A.; Wessel A.; Fischer A.; ter Laak T.; Brunner A. M. Risk-Based Prioritization of Suspects Detected in Riverine Water Using Complementary Chromatographic Techniques. Water Res. 2021, 204, 11761210.1016/j.watres.2021.117612. PubMed DOI
Fang W.; Peng Y.; Muir D.; Lin J.; Zhang X. A Critical Review of Synthetic Chemicals in Surface Waters of the US, the EU and China. Environ. Int. 2019, 131, 10499410.1016/j.envint.2019.104994. PubMed DOI
Wang Z.; Walker G. W.; Muir D. C. G.; Nagatani-Yoshida K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54 (5), 2575–2584. 10.1021/acs.est.9b06379. PubMed DOI
Kümmerer K.; Dionysiou D. D.; Olsson O.; Fatta-Kassinos D. A Path to Clean Water. Science 2018, 361 (6399), 222–224. 10.1126/science.aau2405. PubMed DOI
Albergamo V.; Schollée J. E.; Schymanski E. L.; Helmus R.; Timmer H.; Hollender J.; De Voogt P. Nontarget Screening Reveals Time Trends of Polar Micropollutants in a Riverbank Filtration System. Environ. Sci. Technol. 2019, 53 (13), 7584–7594. 10.1021/acs.est.9b01750. PubMed DOI PMC
McCord J. P.; Groff L. C.; Sobus J. R. Quantitative Non-Targeted Analysis: Bridging the Gap between Contaminant Discovery and Risk Characterization. Environ. Int. 2022, 158, 10701110.1016/j.envint.2021.107011. PubMed DOI PMC
Luo Y.; Guo W.; Ngo H. H.; Nghiem L. D.; Hai F. I.; Zhang J.; Liang S.; Wang X. C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Sci. Total Environ. 2014, 473–474, 619–641. 10.1016/j.scitotenv.2013.12.065. PubMed DOI
Brack W.; Barcelo Culleres D.; Boxall A. B. A.; Budzinski H.; Castiglioni S.; Covaci A.; Dulio V.; Escher B. I.; Fantke P.; Kandie F.; Fatta-Kassinos D.; Hernández F. J.; Hilscherová K.; Hollender J.; Hollert H.; Jahnke A.; Kasprzyk-Hordern B.; Khan S. J.; Kortenkamp A.; Kümmerer K.; Lalonde B.; Lamoree M. H.; Levi Y.; Lara Martín P. A.; Montagner C. C.; Mougin C.; Msagati T.; Oehlmann J.; Posthuma L.; Reid M.; Reinhard M.; Richardson S. D.; Rostkowski P.; Schymanski E.; Schneider F.; Slobodnik J.; Shibata Y.; Snyder S. A.; Fabriz Sodré F.; Teodorovic I.; Thomas K. V.; Umbuzeiro G. A.; Viet P. H.; Yew-Hoong K. G.; Zhang X.; Zuccato E. One Planet: One Health. A Call to Support the Initiative on a Global Science–Policy Body on Chemicals and Waste. Environ. Sci. Eur. 2022, 34 (1), 21.10.1186/s12302-022-00602-6. PubMed DOI PMC
Kiefer K.; Müller A.; Singer H.; Hollender J. New Relevant Pesticide Transformation Products in Groundwater Detected Using Target and Suspect Screening for Agricultural and Urban Micropollutants with LC-HRMS. Water Res. 2019, 165, 11497210.1016/j.watres.2019.114972. PubMed DOI
Brunner A. M.; Vughs D.; Siegers W.; Bertelkamp C.; Hofman-Caris R.; Kolkman A.; Ter Laak T. Monitoring Transformation Product Formation in the Drinking Water Treatments Rapid Sand Filtration and Ozonation. Chemosphere 2019, 214, 801–811. 10.1016/j.chemosphere.2018.09.140. PubMed DOI
Senta I.; Kostanjevecki P.; Krizman-Matasic I.; Terzic S.; Ahel M. Occurrence and Behavior of Macrolide Antibiotics in Municipal Wastewater Treatment: Possible Importance of Metabolites, Synthesis Byproducts, and Transformation Products. Environ. Sci. Technol. 2019, 53 (13), 7463–7472. 10.1021/acs.est.9b01420. PubMed DOI
Gulde R.; Rutsch M.; Clerc B.; Schollée J. E.; Von Gunten U.; McArdell C. S. Formation of Transformation Products during Ozonation of Secondary Wastewater Effluent and Their Fate in Post-Treatment: From Laboratory- to Full-Scale. Water Res. 2021, 200, 11720010.1016/j.watres.2021.117200. PubMed DOI
Escher B. I.; Fenner K. Recent Advances in Environmental Risk Assessment of Transformation Products. Environ. Sci. Technol. 2011, 45 (9), 3835–3847. 10.1021/es1030799. PubMed DOI
Nika M.-C.; Aalizadeh R.; Thomaidis N. S. Non-Target Trend Analysis for the Identification of Transformation Products during Ozonation Experiments of Citalopram and Four of Its Biodegradation Products. J. Hazard. Mater. 2021, 419, 12640110.1016/j.jhazmat.2021.126401. PubMed DOI
Kimura S. Y.; Cuthbertson A. A.; Byer J. D.; Richardson S. D. The DBP Exposome: Development of a New Method to Simultaneously Quantify Priority Disinfection by-Products and Comprehensively Identify Unknowns. Water Res. 2019, 148, 324–333. 10.1016/j.watres.2018.10.057. PubMed DOI
Richardson S. D.; Ternes T. A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2022, 94 (1), 382–416. 10.1021/acs.analchem.1c04640. PubMed DOI
Noguera-Oviedo K.; Aga D. S. Lessons Learned from More than Two Decades of Research on Emerging Contaminants in the Environment. J. Hazard. Mater. 2016, 316, 242–251. 10.1016/j.jhazmat.2016.04.058. PubMed DOI
Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off. J. Eur. Union 2006, 372 (19), 13.
DIRECTIVE 2013/39/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2013, 226 (1), 1–17.
DIRECTIVE (EU) 2020/2184 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 December 2020 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Union 2020, 435 (1), 62.
Feng X.; Sun H.; Liu X.; Zhu B.; Liang W.; Ruan T.; Jiang G. Occurrence and Ecological Impact of Chemical Mixtures in a Semiclosed Sea by Suspect Screening Analysis. Environ. Sci. Technol. 2022, 56 (15), 10681–10690. 10.1021/acs.est.2c00966. PubMed DOI
Krauss M.; Singer H.; Hollender J. LC–High Resolution MS in Environmental Analysis: From Target Screening to the Identification of Unknowns. Anal. Bioanal. Chem. 2010, 397 (3), 943–951. 10.1007/s00216-010-3608-9. PubMed DOI
Pérez-Fernández V.; Mainero Rocca L.; Tomai P.; Fanali S.; Gentili A. Recent Advancements and Future Trends in Environmental Analysis: Sample Preparation, Liquid Chromatography and Mass Spectrometry. Anal. Chim. Acta 2017, 983, 9–41. 10.1016/j.aca.2017.06.029. PubMed DOI
Hollender J.; Schymanski E. L.; Singer H. P.; Ferguson P. L. Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?. Environ. Sci. Technol. 2017, 51 (20), 11505–11512. 10.1021/acs.est.7b02184. PubMed DOI
Sousa J. C. G.; Ribeiro A. R.; Barbosa M. O.; Pereira M. F. R.; Silva A. M. T. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018, 344, 146–162. 10.1016/j.jhazmat.2017.09.058. PubMed DOI
Richardson S. D.; Ternes T. A. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2018, 90 (1), 398–428. 10.1021/acs.analchem.7b04577. PubMed DOI
Richardson S. D.; Kimura S. Y. Water Analysis: Emerging Contaminants and Current Issues. Anal. Chem. 2020, 92 (1), 473–505. 10.1021/acs.analchem.9b05269. PubMed DOI
Kruve A. Strategies for Drawing Quantitative Conclusions from Nontargeted Liquid Chromatography–High-Resolution Mass Spectrometry Analysis. Anal. Chem. 2020, 92 (7), 4691–4699. 10.1021/acs.analchem.9b03481. PubMed DOI
Schymanski E. L.; Jeon J.; Gulde R.; Fenner K.; Ruff M.; Singer H. P.; Hollender J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48 (4), 2097–2098. 10.1021/es5002105. PubMed DOI
Bletsou A. A.; Jeon J.; Hollender J.; Archontaki E.; Thomaidis N. S. Targeted and Non-Targeted Liquid Chromatography-Mass Spectrometric Workflows for Identification of Transformation Products of Emerging Pollutants in the Aquatic Environment. TrAC, Trends Anal. Chem. 2015, 66, 32–44. 10.1016/j.trac.2014.11.009. DOI
Cech N. B.; Krone J. R.; Enke C. G. Predicting Electrospray Response from Chromatographic Retention Time. Anal. Chem. 2001, 73 (2), 208–213. 10.1021/ac0006019. PubMed DOI
Mayhew A. W.; Topping D. O.; Hamilton J. F. New Approach Combining Molecular Fingerprints and Machine Learning to Estimate Relative Ionization Efficiency in Electrospray Ionization. ACS Omega 2020, 5 (16), 9510–9516. 10.1021/acsomega.0c00732. PubMed DOI PMC
Golubović J.; Birkemeyer C.; Protić A.; Otašević B.; Zečević M. Structure–Response Relationship in Electrospray Ionization-Mass Spectrometry of Sartans by Artificial Neural Networks. J. Chromatogr. A 2016, 1438, 123–132. 10.1016/j.chroma.2016.02.021. PubMed DOI
Chalcraft K. R.; Lee R.; Mills C.; Britz-McKibbin P. Virtual Quantification of Metabolites by Capillary Electrophoresis-Electrospray Ionization-Mass Spectrometry: Predicting Ionization Efficiency Without Chemical Standards. Anal. Chem. 2009, 81 (7), 2506–2515. 10.1021/ac802272u. PubMed DOI
Oss M.; Kruve A.; Herodes K.; Leito I. Electrospray Ionization Efficiency Scale of Organic Compounds. Anal. Chem. 2010, 82 (7), 2865–2872. 10.1021/ac902856t. PubMed DOI
Ehrmann B. M.; Henriksen T.; Cech N. B. Relative Importance of Basicity in the Gas Phase and in Solution for Determining Selectivity in Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 (5), 719–728. 10.1016/j.jasms.2008.01.003. PubMed DOI
Ojakivi M.; Liigand J.; Kruve A. Modifying the Acidity of Charged Droplets. ChemistrySelect 2018, 3 (1), 335–338. 10.1002/slct.201702269. DOI
Huffman B. A.; Poltash M. L.; Hughey C. A. Effect of Polar Protic and Polar Aprotic Solvents on Negative-Ion Electrospray Ionization and Chromatographic Separation of Small Acidic Molecules. Anal. Chem. 2012, 84 (22), 9942–9950. 10.1021/ac302397b. PubMed DOI
Kiontke A.; Oliveira-Birkmeier A.; Opitz A.; Birkemeyer C. Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration. PLoS One 2016, 11 (12), e016750210.1371/journal.pone.0167502. PubMed DOI PMC
Raji M. A.; Schug K. A. Chemometric Study of the Influence of Instrumental Parameters on ESI-MS Analyte Response Using Full Factorial Design. Int. J. Mass Spectrom. 2009, 279 (2–3), 100–106. 10.1016/j.ijms.2008.10.013. DOI
Kruve A.; Kiefer K.; Hollender J. Benchmarking of the Quantification Approaches for the Non-Targeted Screening of Micropollutants and Their Transformation Products in Groundwater. Anal. Bioanal. Chem. 2021, 413 (6), 1549–1559. 10.1007/s00216-020-03109-2. PubMed DOI PMC
Kalogiouri N. P.; Aalizadeh R.; Thomaidis N. S. Investigating the Organic and Conventional Production Type of Olive Oil with Target and Suspect Screening by LC-QTOF-MS, a Novel Semi-Quantification Method Using Chemical Similarity and Advanced Chemometrics. Anal. Bioanal. Chem. 2017, 409 (23), 5413–5426. 10.1007/s00216-017-0395-6. PubMed DOI
Pieke E. N.; Granby K.; Trier X.; Smedsgaard J. A Framework to Estimate Concentrations of Potentially Unknown Substances by Semi-Quantification in Liquid Chromatography Electrospray Ionization Mass Spectrometry. Anal. Chim. Acta 2017, 975, 30–41. 10.1016/j.aca.2017.03.054. PubMed DOI
Dahal U. P.; Jones J. P.; Davis J. A.; Rock D. A. Small Molecule Quantification by Liquid Chromatography-Mass Spectrometry for Metabolites of Drugs and Drug Candidates. Drug Metab. Dispos. 2011, 39 (12), 2355–2360. 10.1124/dmd.111.040865. PubMed DOI PMC
Solliec M.; Roy-Lachapelle A.; Storck V.; Callender K.; Greer C. W.; Barbeau B. A Data-Independent Acquisition Approach Based on HRMS to Explore the Biodegradation Process of Organic Micropollutants Involved in a Biological Ion-Exchange Drinking Water Filter. Chemosphere 2021, 277, 13021610.1016/j.chemosphere.2021.130216. PubMed DOI
Chibwe L.; Parrott J. L.; Shires K.; Khan H.; Clarence S.; Lavalle C.; Sullivan C.; O’Brien A. M.; De Silva A. O.; Muir D. C. G.; Rochman C. M. A Deep Dive into the Complex Chemical Mixture and Toxicity of Tire Wear Particle Leachate in Fathead Minnow. Environ. Toxicol. Chem. 2022, 41 (5), 1144–1153. 10.1002/etc.5140. PubMed DOI PMC
Panagopoulos Abrahamsson D.; Park J.-S.; Singh R. R.; Sirota M.; Woodruff T. J. Applications of Machine Learning to In Silico Quantification of Chemicals without Analytical Standards. J. Chem. Inf. Model. 2020, 60 (6), 2718–2727. 10.1021/acs.jcim.9b01096. PubMed DOI PMC
Liigand J.; Wang T.; Kellogg J.; Smedsgaard J.; Cech N.; Kruve A. Quantification for Non-Targeted LC/MS Screening without Standard Substances. Sci. Rep. 2020, 10 (1), 5808.10.1038/s41598-020-62573-z. PubMed DOI PMC
Aalizadeh R.; Panara A.; Thomaidis N. S. Development and Application of a Novel Semi-Quantification Approach in LC-QToF-MS Analysis of Natural Products. J. Am. Soc. Mass Spectrom. 2021, 32 (6), 1412–1423. 10.1021/jasms.1c00032. PubMed DOI
Aalizadeh R.; Nikolopoulou V.; Alygizakis N.; Slobodnik J.; Thomaidis N. S. A Novel Workflow for Semi-Quantification of Emerging Contaminants in Environmental Samples Analyzed by LC-HRMS. Anal. Bioanal. Chem. 2022, 414 (25), 7435–7450. 10.1007/s00216-022-04084-6. PubMed DOI
Palm E.; Kruve A. Machine Learning for Absolute Quantification of Unidentified Compounds in Non-Targeted LC/HRMS. Molecules 2022, 27 (3), 1013.10.3390/molecules27031013. PubMed DOI PMC
Sepman H.; Malm L.; Peets P.; MacLeod M.; Martin J.; Breitholtz M.; Kruve A. Bypassing the Identification: MS2Quant for Concentration Estimations of Chemicals Detected with Nontarget LC-HRMS from MS 2 Data. Anal. Chem. 2023, 95 (33), 12329–12338. 10.1021/acs.analchem.3c01744. PubMed DOI PMC
Tadić Đ.; Manasfi R.; Bertrand M.; Sauvêtre A.; Chiron S. Use of Passive and Grab Sampling and High-Resolution Mass Spectrometry for Non-Targeted Analysis of Emerging Contaminants and Their Semi-Quantification in Water. Molecules 2022, 27 (10), 3167.10.3390/molecules27103167. PubMed DOI PMC
Malm L.; Palm E.; Souihi A.; Plassmann M.; Liigand J.; Kruve A. Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS. Molecules 2021, 26 (12), 3524.10.3390/molecules26123524. PubMed DOI PMC
Sepman H.; Malm L.; Peets P.; Kruve A. Scientometric Review: Concentration and Toxicity Assessment in Environmental Non-Targeted LC/HRMS Analysis. Trends Environ. Anal. Chem. 2023, 40, e0021710.1016/j.teac.2023.e00217. DOI
Hollender J.; Schymanski E. L.; Ahrens L.; Alygizakis N.; Béen F.; Bijlsma L.; Brunner A. M.; Celma A.; Fildier A.; Fu Q.; Gago-Ferrero P.; Gil-Solsona R.; Haglund P.; Hansen M.; Kaserzon S.; Kruve A.; Lamoree M.; Margoum C.; Meijer J.; Merel S.; Rauert C.; Rostkowski P.; Samanipour S.; Schulze B.; Schulze T.; Singh R. R.; Slobodnik J.; Steininger-Mairinger T.; Thomaidis N. S.; Togola A.; Vorkamp K.; Vulliet E.; Zhu L.; Krauss M. NORMAN Guidance on Suspect and Non-Target Screening in Environmental Monitoring. Environ. Sci. Eur. 2023, 35 (1), 75.10.1186/s12302-023-00779-4. DOI
Quantem Version 0.3, 2021. https://quantem.co/.
Aalizadeh R.Semi-Quantification of Emerging Pollutants Version 1.0.0, 2021. http://trams.chem.uoa.gr/semiquantification/.
Core R.. Team. R: A Language and Environment for Statistical Computing, 2021. https://www.R-project.org/ (accessed 2022-03-10).
DSFP Digital Sample Freezing Platform . NORMAN Semiquantitative trial 10.60930/f201–3y97. https://dsfp.norman-data.eu/dataset/ab6a8f98-3a1f-41d2-b136-002cd69b9f8c.
Alygizakis N. A.; Oswald P.; Thomaidis N. S.; Schymanski E. L.; Aalizadeh R.; Schulze T.; Oswaldova M.; Slobodnik J. NORMAN Digital Sample Freezing Platform: A European Virtual Platform to Exchange Liquid Chromatography High Resolution-Mass Spectrometry Data and Screen Suspects in “Digitally Frozen” Environmental Samples. TrAC, Trends Anal. Chem. 2019, 115, 129–137. 10.1016/j.trac.2019.04.008. DOI
Helmus R.; Van De Velde B.; Brunner A. M.; Ter Laak T. L.; Van Wezel A. P.; Schymanski E. L. patRoon 2.0: Improved Non-Target Analysis Workflowsincluding Automated Transformation Product Screening. JOSS 2022, 7 (71), 4029.10.21105/joss.04029. DOI
Peets P.; Wang W.-C.; MacLeod M.; Breitholtz M.; Martin J. W.; Kruve A. MS2Tox Machine Learning Tool for Predicting the Ecotoxicity of Unidentified Chemicals in Water by Nontarget LC-HRMS. Environ. Sci. Technol. 2022, 56 (22), 15508–15517. 10.1021/acs.est.2c02536. PubMed DOI PMC
NORMAN Network; Aalizadeh R.; Alygizakis N.; Schymanski E.; Slobodnik J.; Fischer S.; Cirka L.. S0 | SUSDAT | Merged NORMAN Suspect List: SusDat, 2022. 10.5281/ZENODO.2664077. DOI
Liigand P.; Liigand J.; Kaupmees K.; Kruve A. 30 Years of Research on ESI/MS Response: Trends, Contradictions and Applications. Anal. Chim. Acta 2021, 1152, 238117.10.1016/j.aca.2020.11.049. PubMed DOI
Groff L. C.; Grossman J. N.; Kruve A.; Minucci J. M.; Lowe C. N.; McCord J. P.; Kapraun D. F.; Phillips K. A.; Purucker S. T.; Chao A.; Ring C. L.; Williams A. J.; Sobus J. R. Uncertainty Estimation Strategies for Quantitative Non-Targeted Analysis. Anal. Bioanal. Chem. 2022, 414 (17), 4919–4933. 10.1007/s00216-022-04118-z. PubMed DOI PMC
Alygizakis N.; Lestremau F.; Gago-Ferrero P.; Gil-Solsona R.; Arturi K.; Hollender J.; Schymanski E. L.; Dulio V.; Slobodnik J.; Thomaidis N. S. Towards a Harmonized Identification Scoring System in LC-HRMS/MS Based Non-Target Screening (NTS) of Emerging Contaminants. TrAC, Trends Anal. Chem. 2023, 159, 11694410.1016/j.trac.2023.116944. DOI
Souihi A.; Mohai M. P.; Palm E.; Malm L.; Kruve A. MultiConditionRT: Predicting Liquid Chromatography Retention Time for Emerging Contaminants for a Wide Range of Eluent Compositions and Stationary Phases. J. Chromatogr. A 2022, 1666, 46286710.1016/j.chroma.2022.462867. PubMed DOI
Moriwaki H.; Tian Y.-S.; Kawashita N.; Takagi T. Mordred: A Molecular Descriptor Calculator. J. Cheminform. 2018, 10 (1), 4.10.1186/s13321-018-0258-y. PubMed DOI PMC
Tisler S.; Kilpinen K.; Pattison D. I.; Tomasi G.; Christensen J. H. Quantitative Nontarget Analysis of CECs in Environmental Samples Can Be Improved by Considering All Mass Adducts. Anal. Chem. 2024, 96 (1), 229–237. 10.1021/acs.analchem.3c03791. PubMed DOI PMC
BP4NTA. BP4NTA: Data Processing And Analysis. Reference Content. https://nontargetedanalysis.org/reference-content/methods/data-processing-and-analysis/ (accessed 2024-08-26).
Renner G.; Reuschenbach M. Critical Review on Data Processing Algorithms in Non-Target Screening: Challenges and Opportunities to Improve Result Comparability. Anal. Bioanal. Chem. 2023, 415 (18), 4111–4123. 10.1007/s00216-023-04776-7. PubMed DOI PMC