One planet: one health. A call to support the initiative on a global science-policy body on chemicals and waste
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35281760
PubMed Central
PMC8902847
DOI
10.1186/s12302-022-00602-6
PII: 602
Knihovny.cz E-zdroje
- Klíčová slova
- Chemical pollution, One-health perspective, Planetary boundaries, Science–policy body on chemicals, Systems thinking,
- Publikační typ
- časopisecké články MeSH
The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.
Catalan Institute of Water Research Carrer Emili Grahit 101 17003 Girona Spain
Center for Applied Geoscience Eberhard Karls University of Tübingen 72076 Tübingen Germany
Centre of Chemical Safety and Risks School of the Environment Nanjing University Nanjing China
Department of Biological Sciences Moi University 3900 30100 Eldoret Kenya
Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA
Department of Environmental Science Radbound University Nijmegen Nijmegen The Netherlands
Dept Environment and Geography University of York York N Yorkshire YO10 5DD UK
Eawag Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
Environmental Institute Okruzna 784 42 97241 Kos Slovak Republic
Faculty of Sciences University of Novi Sad Novi Sad Serbia
Faculty of Technology UNICAMP Limeira 13484 332 Brazil
Institute for Social Ecological Research Hamburger Alee 45 60486 Frankfurt Germany
Institute of Biogeochemistry and Pollutant Dynamics ETH Zurich 8092 Zurich Switzerland
Institute of Chemistry UNICAMP Campinas 13083 970 Brazil
NILU Norwegian Institute for Air Research P O Box 100 2027 Kjeller Norway
Norwegian Institute for Water Research Environmental Chemistry and Technology Oslo Norway
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic
Research Institute for Pesticides and Water University Jaume 1 12006 Castellon Spain
RWTH Aachen University Worringerweg 1 52074 Aachen Germany
Stanford University Stanford CA 94305 4020 USA
The French Water Academy 51 rue Salvador Allende 92027 Nanterre France
Toxicological Center University of Antwerp Universiteitsplen 1 2610 Wilrijk Belgium
UFZ Helmholtz Centre for Environmental Research Permoserstraße 15 04318 Leipzig Germany
Université de Bordeaux 351 crs de la Libération 33405 Talence France
Université Paris Saclay INRAE AgroParisTech UMR ECOSYS 78026 Versailles France
University of Bath Bath BA2 7AY UK
University of Brasilia Brasília DF 70910 000 Brazil
University of Luxembourg 6 avenue du Swing 4367 Belvaux Luxembourg
Zobrazit více v PubMed
European Commission (2019) Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. COM(2019) 640 final
European Commission (2020) Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions. Chemicals strategy for sustainability. Towards a toxic-free environment. COM(2020) 667 final
United Nations Environment Programme (2017) Towards a pollution-free planet. Background report, Nairobi, Kenya. https://www.unenvironment.org/resources/report/towards-pollution-free-planet-background-report
United Nations Environment Programme (2021) Making peace with nature. https://www.unep.org/resources/making-peace-nature
Wang Z, et al. We need a global science-policy body on chemicals and waste. Science. 2021;371(6531):774–776. doi: 10.1126/science.abe9090. PubMed DOI
Rockström J, et al. A safe operating space for humanity. Nature. 2009;461(7263):472–475. doi: 10.1038/461472a. PubMed DOI
Persson L, et al. Outside the safe operating space of the planetary boundary for novel entities. Environ Sci Technol. 2022 doi: 10.1021/acs.est.1c04158. PubMed DOI PMC
Steffen W, et al. Planetary boundaries: guiding human development on a changing planet. Science. 2015;347(6223):1259855. doi: 10.1126/science.1259855. PubMed DOI
Diamond ML, et al. Exploring the planetary boundary for chemical pollution. Environ Int. 2015;78:8–15. doi: 10.1016/j.envint.2015.02.001. PubMed DOI
Persson LM, et al. Confronting unknown planetary boundary threats from chemical pollution. Environ Sci Technol. 2013;47(22):12619–12622. doi: 10.1021/es402501c. PubMed DOI
MacLeod M, et al. Identifying chemicals that are planetary boundary threats. Environ Sci Technol. 2014;48(19):11057–11063. doi: 10.1021/es501893m. PubMed DOI
Bernhardt ES, Rosi EJ, Gessner MO. Synthetic chemicals as agents of global change. Front Ecol Environ. 2017;15(2):84–90. doi: 10.1002/fee.1450. DOI
MacLeod M, et al. The global threat from plastic pollution. Science. 2021;373(6550):61–65. doi: 10.1126/science.abg5433. PubMed DOI
Jahnke A, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ Sci Technol Lett. 2017;4(3):85–90. doi: 10.1021/acs.estlett.7b00008. DOI
Arp HPH, et al. Weathering plastics as a planetary boundary threat: exposure, fate, and hazards. Environ Sci Technol. 2021;55(11):7246–7255. doi: 10.1021/acs.est.1c01512. PubMed DOI
Borrelle SB, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020;369(6510):1515–1518. doi: 10.1126/science.aba3656. PubMed DOI
Lau WWY, et al. Evaluating scenarios toward zero plastic pollution. Science. 2020;369(6510):1455–1461. doi: 10.1126/science.aba9475. PubMed DOI
Benson NU, Bassey DE, Palanisami T. COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon. 2021 doi: 10.1016/j.heliyon.2021.e06343. PubMed DOI PMC
Benson NU, et al. COVID-19 pandemic and emerging plastic-based personal protective equipment waste pollution and management in Africa. J Environ Chem Eng. 2021 doi: 10.1016/j.jece.2021.105222. PubMed DOI PMC
Ardusso M, et al. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci Total Environ. 2021 doi: 10.1016/j.scitotenv.2020.144365. PubMed DOI PMC
Fromme H, et al. Perfluorinated compounds—exposure assessment for the general population in western countries. Int J Hyg Environ Health. 2009;212(3):239–270. doi: 10.1016/j.ijheh.2008.04.007. PubMed DOI
Katsikantami I, et al. A global assessment of phthalates burden and related links to health effects. Environ Int. 2016;97:212–236. doi: 10.1016/j.envint.2016.09.013. PubMed DOI
Honda M, Kannan K. Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ Pollut. 2018;232:487–493. doi: 10.1016/j.envpol.2017.09.073. PubMed DOI
Fiedler H, Sadia M. Regional occurrence of perfluoroalkane substances in human milk for the global monitoring plan under the Stockholm convention on persistent organic pollutants during 2016–2019. Chemosphere. 2021 doi: 10.1016/j.chemosphere.2021.130287. PubMed DOI
Weber R, et al. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environ Sci Eur. 2018;30(1):42. doi: 10.1186/s12302-018-0166-9. PubMed DOI PMC
Jamieson AJ, et al. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol. 2017 doi: 10.1038/s41559-016-0051. PubMed DOI
Houde M, et al. Monitoring of perfluorinated compounds in aquatic biota: an updated review PFCs in aquatic biota. Environ Sci Technol. 2011;45(19):7962–7973. doi: 10.1021/es104326w. PubMed DOI
Malarvannan G, Poma G, Covaci A. Interspecies comparison of the residue levels and profiles of persistent organic pollutants in terrestrial top predators. Environ Res. 2020;183:109187. doi: 10.1016/j.envres.2020.109187. PubMed DOI
Crawford SE, et al. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. J Hazard Mater. 2022 doi: 10.1016/j.jhazmat.2021.126691. PubMed DOI
Pawlak F, Koziol K, Polkowska Z. Chemical hazard in glacial melt? The glacial system as a secondary source of POPs (in the northern Hemisphere). A systematic review. Sci Total Environ. 2021 doi: 10.1016/j.scitotenv.2021.145244. PubMed DOI
Nizzetto L, et al. Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol. 2010;44(17):6526–6531. doi: 10.1021/es100178f. PubMed DOI
Fang WD, et al. A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environ Int. 2019 doi: 10.1016/j.envint.2019.104994. PubMed DOI
aus der Beek T, et al. Pharmaceuticals in the environment—global occurrences and perspectives. Environ Toxicol Chem. 2016;35(4):823–835. doi: 10.1002/etc.3339. PubMed DOI
Escher BI, Stapleton HM, Schymanski EL. Tracking complex mixtures of chemicals in our changing environment. Science. 2020;367(6476):388–392. doi: 10.1126/science.aay6636. PubMed DOI PMC
Tran NH, Reinhard M, Gin KY-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—a review. Water Res. 2018;133:182–207. doi: 10.1016/j.watres.2017.12.029. PubMed DOI
Kookana RS, et al. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos Trans R Soc B Biol Sci. 2014 doi: 10.1098/rstb.2013.0586. PubMed DOI PMC
Dsikowitzky L, et al. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India. Sci Total Environ. 2014;485:348–362. doi: 10.1016/j.scitotenv.2014.03.034. PubMed DOI
Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. 2019;16(2):1193–1226. doi: 10.1007/s13762-018-2130-z. DOI
Larsson DGJ. Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc B Biol Sci. 2014 doi: 10.1098/rstb.2013.0571. PubMed DOI PMC
Marathe NP, et al. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS ONE. 2013 doi: 10.1371/journal.pone.0077310. PubMed DOI PMC
Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int. 2016;86:140–149. doi: 10.1016/j.envint.2015.10.015. PubMed DOI
O'Neill J (2014) The review on antimicrobial resistance. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. https://amr-review.org/
Dulio V, et al. The NORMAN association and the European partnership for chemicals risk assessment (PARC): let’s cooperate! Environ Sci Eur. 2020 doi: 10.1186/s12302-020-00375-w. DOI
Stehle S, Schulz R. Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci USA. 2015;112(18):5750–5755. doi: 10.1073/pnas.1500232112. PubMed DOI PMC
Sposito JCV, et al. Emerging contaminants in Brazilian rivers: occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere. 2018;209:696–704. doi: 10.1016/j.chemosphere.2018.06.046. PubMed DOI
Guruge KS, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci Total Environ. 2019;690:683–695. doi: 10.1016/j.scitotenv.2019.07.042. PubMed DOI
Aubakirova B, Beisenova R, Boxall ABA. Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan. Integr Environ Assess Manag. 2017;13(5):832–839. doi: 10.1002/ieam.1895. PubMed DOI
Ogunbanwo OM, et al. High concentrations of pharmaceuticals in a Nigerian river catchment. Environ Toxicol Chem. 2020 doi: 10.1002/etc.4879. PubMed DOI
Kandie FJ, et al. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci Total Environ. 2020 doi: 10.1016/j.scitotenv.2020.136748. PubMed DOI
Ferronato N, Torretta V. Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health. 2019 doi: 10.3390/ijerph16061060. PubMed DOI PMC
Brooks AL, Wang SL, Jambeck JR. The Chinese import ban and its impact on global plastic waste trade. Sci Adv. 2018 doi: 10.1126/sciadv.aat0131. PubMed DOI PMC
Fekadu S, et al. Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci Total Environ. 2019;654:324–337. doi: 10.1016/j.scitotenv.2018.11.072. PubMed DOI
K'Oreje KO, et al. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: literature review and a look ahead. J Environ Manag. 2020 doi: 10.1016/j.jenvman.2019.109752. PubMed DOI
Ng CA, Goetz N. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect. 2017;125(1):1–7. doi: 10.1289/EHP168. PubMed DOI PMC
Ecobichon DJ. Pesticide use in developing countries. Toxicology. 2001;160(1–3):27–33. doi: 10.1016/s0300-483x(00)00452-2. PubMed DOI
Kümmerer K et al (2021) Key Characteristics of sustainable chemistry. towards a common understanding of sustainable chemistry. International Sustainable Chemistry Collaborative Centre. https://www.isc3.org/fileadmin/user_upload/Documentations_Report_PDFs/ISC3_Sustainable_Chemistry_key_characteristics_20210113.pdf
Fantke P, et al. Transition to sustainable chemistry through digitalization. Chem. 2021;7(11):2866–2882. doi: 10.1016/j.chempr.2021.09.012. DOI
Kümmerer K, et al. A path to clean water. Science. 2018;361(6399):222–224. doi: 10.1126/science.aau2405. PubMed DOI
Wang ZY, et al. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol. 2020;54(5):2575–2584. doi: 10.1021/acs.est.9b06379. PubMed DOI
Pan YT, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environ Sci Technol. 2018;52(14):7621–7629. doi: 10.1021/acs.est.8b00829. PubMed DOI
Gago-Ferrero P, et al. Wide-scope target screening of > 2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRIVIS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J Hazard Mater. 2020 doi: 10.1016/j.jhazmat.2019.121712. PubMed DOI
Brack W, et al. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environ Sci Eur. 2019;31(1):62. doi: 10.1186/s12302-019-0230-0. DOI
Kortenkamp A, Faust M. Regulate to reduce chemical mixture risk. Science. 2018;361(6399):224–226. doi: 10.1126/science.aat9219. PubMed DOI
Schymanski EL, Williams AJ. Open science for identifying “known unknown” chemicals. Environ Sci Technol. 2017;51(10):5357–5359. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC
Schymanski EL, Bolton EE. FAIR chemical structures in the Journal of Cheminformatics. J Cheminform. 2021;13(1):50. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC
Alygizakis NA, et al. NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. Trac-Trends Anal Chem. 2019;115:129–137. doi: 10.1016/j.trac.2019.04.008. DOI
Slobodnik J, et al. Establish data infrastructure to compile and exchange environmental screening data on a European scale. Environ Sci Eur. 2019;31(1):65. doi: 10.1186/s12302-019-0237-6. DOI
Williams AJ, et al. Sourcing data on chemical properties and hazard data from the US-EPA CompTox chemicals dashboard: a practical guide for human risk assessment. Environ Int. 2021 doi: 10.1016/j.envint.2021.106566. PubMed DOI PMC
Kim S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D1395. doi: 10.1093/nar/gkaa971. PubMed DOI PMC
Brack W, et al. Effect-based methods are key. The European collaborative project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ Sci Eur. 2019;31(1):10. doi: 10.1186/s12302-019-0192-2. DOI
Caballero-Casero N, et al. Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring. Trac-Trends Anal Chem. 2021 doi: 10.1016/j.trac.2021.116201. DOI
Bopp SK, et al. Current EU research activities on combined exposure to multiple chemicals. Environ Int. 2018;120:544–562. doi: 10.1016/j.envint.2018.07.037. PubMed DOI PMC
Drakvik E, et al. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ Int. 2020;134:105267. doi: 10.1016/j.envint.2019.105267. PubMed DOI PMC
Posthuma L, et al. Improved component-based methods for mixture risk assessment are key to characterize complex chemical pollution in surface waters. Environ Sci Eur. 2019;31(1):70. doi: 10.1016/j.envint.2019.105267. DOI
Cousins IT, et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts. 2019;21(11):1803–1815. doi: 10.1039/c9em00163h. PubMed DOI PMC
American Veterinary Medical Association . One health: a new professional imperative. Schaumburg: American Veterinary Medical Association; 2008.
Gunnarsson L, et al. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol. 2008;42(15):5807–5813. doi: 10.1021/es8005173. PubMed DOI
Edwards SW, et al. Adverse outcome pathways-organizing toxicological information to improve decision making. J Pharmacol Exp Ther. 2016;356(1):170–181. doi: 10.1124/jpet.115.228239. PubMed DOI
United Nations Environment Programme (2019) Global chemicals outlook II. From legacies to innovative solutions. Implementing the 2030 agenda for sustainable development. https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions
Landrigan PJ, et al. The lancet commission on pollution and health. Lancet. 2018;391(10119):462–512. doi: 10.1016/S0140-6736(17)32345-0. PubMed DOI
Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–2178. doi: 10.1016/S0140-6736(06)69665-7. PubMed DOI
Martin OV, et al. A human mixture risk assessment for neurodevelopmental toxicity associated with polybrominated diphenyl ethers used as flame retardants. Environ Health Perspect. 2017;125(8):087016. doi: 10.1289/EHP826. PubMed DOI PMC
Skakkebaek NE, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96(1):55–97. doi: 10.1152/physrev.00017.2015. PubMed DOI PMC
Mocarelli P, et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116(1):70–77. doi: 10.1289/ehp.10399. PubMed DOI PMC
Karwacka A, et al. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence. Hum Fertil. 2019;22(1):2–25. doi: 10.1080/14647273.2017.1358828. PubMed DOI
Vorosmarty CJ, et al. Global threats to human water security and river biodiversity. Nature. 2010;467(7315):555–561. doi: 10.1038/nature09440. PubMed DOI
Groh K, et al. Anthropogenic chemicals as underestimated drivers of biodiversity loss: scientific and societal implications. Environ Sci Technol. 2022;56:707–710. doi: 10.1021/acs.est.1c08399. PubMed DOI
Malaj E, et al. Organic chemicals jeopardise freshwater ecosystems health on the continental scale. Proc Natl Acad Sci. 2014;111(26):9549–9554. doi: 10.1073/pnas.1321082111. PubMed DOI PMC
Lemm JU, et al. Multiple stressors determine river ecological status at the European scale: towards an integrated understanding of river status deterioration. Glob Change Biol. 2021;27(9):1962–1975. doi: 10.1111/gcb.15504. PubMed DOI
Desforges JP, et al. Predicting global killer whale population collapse from PCB pollution. Science. 2018;361(6409):1373–1376. doi: 10.1126/science.aat1953. PubMed DOI
Jobling S, et al. Widespread sexual disruption in wild fish. Environ Sci Technol. 1998;32(17):2498–2506. doi: 10.1021/es9710870. DOI
Kidd KA, et al. Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA. 2007;104(21):8897–8901. doi: 10.1073/pnas.0609568104. PubMed DOI PMC
Secretariat for the Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (2008) Decision guidance document for tributyltin compounds. United Nations Environment Programme
Oehlmann J, et al. Endocrine disruption in prosobranch molluscs: evidence and ecological relevance. Ecotoxicology. 2007;16(1):29–43. doi: 10.1007/s10646-006-0109-x. PubMed DOI
Oetken M, et al. Evidence for endocrine disruption in invertebrates. In: Jeon KW, et al., editors. International review of cytology—a survey of cell biology. New York: Academic Press; 2004. pp. 1–44. PubMed
Machate O, et al. Evidence for antifouling biocides as one of the limiting factors for the recovery of macrophyte communities in lakes of Schleswig-Holstein. Environ Sci Eur. 2021;33(1):57. doi: 10.1186/s12302-021-00500-3. DOI
Sayer CD, et al. TBT causes regime shift in shallow lakes. Environ Sci Technol. 2006;40(17):5269–5275. doi: 10.1021/es060161o. PubMed DOI
Hooper DU, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75(1):3–35. doi: 10.1890/04-0922. DOI
Newbold T, et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science. 2016;353(6296):288–291. doi: 10.1126/science.aaf2201. PubMed DOI
Hallmann CA, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017 doi: 10.1371/journal.pone.0185809. PubMed DOI PMC
Mineau P, Whiteside M. Pesticide acute toxicity is a better correlate of US grassland bird declines than agricultural intensification. PLoS ONE. 2013 doi: 10.1371/journal.pone.0057457. PubMed DOI PMC
Hallmann CA, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. 2014;511(7509):341. doi: 10.1038/nature13531. PubMed DOI
Oaks JL, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 2004;427(6975):630–633. doi: 10.1038/nature02317. PubMed DOI
Balmford A. Pollution, politics, and vultures. Science. 2013;339(6120):653–654. doi: 10.1126/science.1234193. PubMed DOI
Becker JM, et al. Pesticide pollution in freshwater paves the way for schistosomiasis transmission. Sci Rep. 2020;10(1):3650. doi: 10.1038/s41598-020-60654-7. PubMed DOI PMC
Johnston EL, Mayer-Pinto M, Crowe TP. Chemical contaminant effects on marine ecosystem functioning. J Appl Ecol. 2015;52(1):140–149. doi: 10.1111/1365-2664.12355. DOI
Wang J, et al. Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. J Environ Manag. 2021 doi: 10.1016/j.jenvman.2020.111873. PubMed DOI
Meybeck M, et al. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005) Sci Total Environ. 2007;375(1–3):204–231. doi: 10.1016/j.scitotenv.2006.12.017. PubMed DOI
Posthuma L, et al. Exploring the ‘solution space’ is key: SOLUTIONS recommends an early-stage assessment of options to protect and restore water quality against chemical pollution. Environ Sci Eur. 2019;31(1):73. doi: 10.1186/s12302-019-0253-6. DOI
Backhaus T, Scheringer M, Wang ZY. Developing SAICM into a framework for the international governance of chemicals throughout their Lifecycle: Looking beyond 2020. Integr Environ Assess Manag. 2018;14(4):432–433. doi: 10.1002/ieam.4052. PubMed DOI
McAlister MM, et al. Systems thinking for effective interventions in global environmental health. Environ Sci Technol. 2022;56(2):732–738. doi: 10.1021/acs.est.1c04110. PubMed DOI PMC
Fantke P, et al. Exposure and toxicity characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. Int J Life Cycle Assess. 2021;26(5):899–915. doi: 10.1007/s11367-021-01889-y. PubMed DOI PMC
Aurisano N, et al. Chemicals of concern in plastic toys. Environ Int. 2021 doi: 10.1016/j.envint.2020.106194. PubMed DOI
Huang L, et al. Chemicals of concern in building materials: a high-throughput screening. J Hazard Mater. 2022 doi: 10.1016/j.jhazmat.2021.127574. PubMed DOI
Scheringer M. Long-range transport of organic chemicals in the environment. Environ Toxicol Chem. 2009;28(4):677–690. doi: 10.1897/08-324R.1. PubMed DOI
Quantification Approaches in Non-Target LC/ESI/HRMS Analysis: An Interlaboratory Comparison