One planet: one health. A call to support the initiative on a global science-policy body on chemicals and waste

. 2022 ; 34 (1) : 21. [epub] 20220308

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35281760

The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science-policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science-policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science-policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.

Catalan Institute of Water Research Carrer Emili Grahit 101 17003 Girona Spain

Center for Applied Geoscience Eberhard Karls University of Tübingen 72076 Tübingen Germany

Centre for Pollution Research and Policy Department of Life Sciences College of Health Medicine and Life Sciences Brunel University London Uxbridge UB8 3PH UK

Centre of Chemical Safety and Risks School of the Environment Nanjing University Nanjing China

Departamento de Química Física Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz European Universities of the Seas Campus Río San Pedro 11510 Puerto Real Cádiz Spain

Department Environment and Health Vrije Universiteit Amsterdam De Boelelaan 1085 1081 HV Amsterdam The Netherlands

Department of Biological Sciences Moi University 3900 30100 Eldoret Kenya

Department of Chemistry and Biochemistry University of South Carolina Columbia SC 29208 USA

Department of Civil and Environmental Engineering and Nireas International Water Research Center University of Cyprus P O Box 20537 1678 Nicosia Cyprus

Department of Civil and Environmental Engineering National University of Singapore 1 Engineering Drive 2 Singapore Singapore

Department of Environmental Science Radbound University Nijmegen Nijmegen The Netherlands

Department of Environmental Sciences Istituto di Ricerche Farmacologiche Mario Negri IRCCS Via Mario Negri 2 20156 Milan Italy

Dept Environment and Geography University of York York N Yorkshire YO10 5DD UK

Eawag Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland

Environmental Institute Okruzna 784 42 97241 Kos Slovak Republic

Environmental Safety Center Tokyo University of Science 12 1 Ichigaya Funagawara Shinjuku Tokyo 162 0826 Japan

Faculty Biological Sciences Goethe University Frankfurt Max von der Laue Straße 13 60438 Frankfurt Germany

Faculty of Sciences University of Novi Sad Novi Sad Serbia

Faculty of Technology UNICAMP Limeira 13484 332 Brazil

INERIS Direction Milieu et Impacts sur le Vivant Parc technologique ALATA 60550 Verneuil en Halatte France

Institute for Nanotechnology and Water Sustainability University of South Africa Pretoria South Africa

Institute for Social Ecological Research Hamburger Alee 45 60486 Frankfurt Germany

Institute for Sustainable Chemistry Leuphana University Lüneburg Universitätsallee 1 21335 Lüneburg Germany

Institute of Biogeochemistry and Pollutant Dynamics ETH Zurich 8092 Zurich Switzerland

Institute of Chemistry UNICAMP Campinas 13083 970 Brazil

Nanyang Environment and Water Research Institute Nanyang Technological University Singapore Singapore

NILU Norwegian Institute for Air Research P O Box 100 2027 Kjeller Norway

Norwegian Institute for Water Research Environmental Chemistry and Technology Oslo Norway

Quantitative Sustainability Assessment Department of Technology Management and Economics Technical University of Denmark Produktionstorvet 424 2800 Kgs Lyngby Denmark

Queensland Alliance for Environmental Health Sciences The University of Queensland 20 Cornwall Street Woolloongabba QLD 4102 Australia

RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno Czech Republic

Research Institute for Pesticides and Water University Jaume 1 12006 Castellon Spain

RIVM National Institute for Public Health and the Environment PO Box 1 3720 BA Bilthoven The Netherlands

RWTH Aachen University Worringerweg 1 52074 Aachen Germany

School of Civil and Environmental Engineering University of New South Wales Sydney NSW 2052 Australia

Spanish National Research Council Institute for Environmental Assessment and Water Research Water and Soil Quality Research Group Jordi Girona 18 26 08034 Barcelona Spain

Stanford University Stanford CA 94305 4020 USA

The French Water Academy 51 rue Salvador Allende 92027 Nanterre France

Toxicological Center University of Antwerp Universiteitsplen 1 2610 Wilrijk Belgium

UFZ Helmholtz Centre for Environmental Research Permoserstraße 15 04318 Leipzig Germany

Université de Bordeaux 351 crs de la Libération 33405 Talence France

Université Paris Saclay INRAE AgroParisTech UMR ECOSYS 78026 Versailles France

University of Bath Bath BA2 7AY UK

University of Brasilia Brasília DF 70910 000 Brazil

University of Luxembourg 6 avenue du Swing 4367 Belvaux Luxembourg

VNU Key Laboratory of Analytical Technology for Environmental Quality Vietnam National University 334 Nguyen Trai Hanoi Vietnam

Zobrazit více v PubMed

European Commission (2019) Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. COM(2019) 640 final

European Commission (2020) Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions. Chemicals strategy for sustainability. Towards a toxic-free environment. COM(2020) 667 final

United Nations Environment Programme (2017) Towards a pollution-free planet. Background report, Nairobi, Kenya. https://www.unenvironment.org/resources/report/towards-pollution-free-planet-background-report

United Nations Environment Programme (2021) Making peace with nature. https://www.unep.org/resources/making-peace-nature

Wang Z, et al. We need a global science-policy body on chemicals and waste. Science. 2021;371(6531):774–776. doi: 10.1126/science.abe9090. PubMed DOI

Rockström J, et al. A safe operating space for humanity. Nature. 2009;461(7263):472–475. doi: 10.1038/461472a. PubMed DOI

Persson L, et al. Outside the safe operating space of the planetary boundary for novel entities. Environ Sci Technol. 2022 doi: 10.1021/acs.est.1c04158. PubMed DOI PMC

Steffen W, et al. Planetary boundaries: guiding human development on a changing planet. Science. 2015;347(6223):1259855. doi: 10.1126/science.1259855. PubMed DOI

Diamond ML, et al. Exploring the planetary boundary for chemical pollution. Environ Int. 2015;78:8–15. doi: 10.1016/j.envint.2015.02.001. PubMed DOI

Persson LM, et al. Confronting unknown planetary boundary threats from chemical pollution. Environ Sci Technol. 2013;47(22):12619–12622. doi: 10.1021/es402501c. PubMed DOI

MacLeod M, et al. Identifying chemicals that are planetary boundary threats. Environ Sci Technol. 2014;48(19):11057–11063. doi: 10.1021/es501893m. PubMed DOI

Bernhardt ES, Rosi EJ, Gessner MO. Synthetic chemicals as agents of global change. Front Ecol Environ. 2017;15(2):84–90. doi: 10.1002/fee.1450. DOI

MacLeod M, et al. The global threat from plastic pollution. Science. 2021;373(6550):61–65. doi: 10.1126/science.abg5433. PubMed DOI

Jahnke A, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environ Sci Technol Lett. 2017;4(3):85–90. doi: 10.1021/acs.estlett.7b00008. DOI

Arp HPH, et al. Weathering plastics as a planetary boundary threat: exposure, fate, and hazards. Environ Sci Technol. 2021;55(11):7246–7255. doi: 10.1021/acs.est.1c01512. PubMed DOI

Borrelle SB, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020;369(6510):1515–1518. doi: 10.1126/science.aba3656. PubMed DOI

Lau WWY, et al. Evaluating scenarios toward zero plastic pollution. Science. 2020;369(6510):1455–1461. doi: 10.1126/science.aba9475. PubMed DOI

Benson NU, Bassey DE, Palanisami T. COVID pollution: impact of COVID-19 pandemic on global plastic waste footprint. Heliyon. 2021 doi: 10.1016/j.heliyon.2021.e06343. PubMed DOI PMC

Benson NU, et al. COVID-19 pandemic and emerging plastic-based personal protective equipment waste pollution and management in Africa. J Environ Chem Eng. 2021 doi: 10.1016/j.jece.2021.105222. PubMed DOI PMC

Ardusso M, et al. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci Total Environ. 2021 doi: 10.1016/j.scitotenv.2020.144365. PubMed DOI PMC

Fromme H, et al. Perfluorinated compounds—exposure assessment for the general population in western countries. Int J Hyg Environ Health. 2009;212(3):239–270. doi: 10.1016/j.ijheh.2008.04.007. PubMed DOI

Katsikantami I, et al. A global assessment of phthalates burden and related links to health effects. Environ Int. 2016;97:212–236. doi: 10.1016/j.envint.2016.09.013. PubMed DOI

Honda M, Kannan K. Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ Pollut. 2018;232:487–493. doi: 10.1016/j.envpol.2017.09.073. PubMed DOI

Fiedler H, Sadia M. Regional occurrence of perfluoroalkane substances in human milk for the global monitoring plan under the Stockholm convention on persistent organic pollutants during 2016–2019. Chemosphere. 2021 doi: 10.1016/j.chemosphere.2021.130287. PubMed DOI

Weber R, et al. Reviewing the relevance of dioxin and PCB sources for food from animal origin and the need for their inventory, control and management. Environ Sci Eur. 2018;30(1):42. doi: 10.1186/s12302-018-0166-9. PubMed DOI PMC

Jamieson AJ, et al. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evol. 2017 doi: 10.1038/s41559-016-0051. PubMed DOI

Houde M, et al. Monitoring of perfluorinated compounds in aquatic biota: an updated review PFCs in aquatic biota. Environ Sci Technol. 2011;45(19):7962–7973. doi: 10.1021/es104326w. PubMed DOI

Malarvannan G, Poma G, Covaci A. Interspecies comparison of the residue levels and profiles of persistent organic pollutants in terrestrial top predators. Environ Res. 2020;183:109187. doi: 10.1016/j.envres.2020.109187. PubMed DOI

Crawford SE, et al. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. J Hazard Mater. 2022 doi: 10.1016/j.jhazmat.2021.126691. PubMed DOI

Pawlak F, Koziol K, Polkowska Z. Chemical hazard in glacial melt? The glacial system as a secondary source of POPs (in the northern Hemisphere). A systematic review. Sci Total Environ. 2021 doi: 10.1016/j.scitotenv.2021.145244. PubMed DOI

Nizzetto L, et al. Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol. 2010;44(17):6526–6531. doi: 10.1021/es100178f. PubMed DOI

Fang WD, et al. A critical review of synthetic chemicals in surface waters of the US, the EU and China. Environ Int. 2019 doi: 10.1016/j.envint.2019.104994. PubMed DOI

aus der Beek T, et al. Pharmaceuticals in the environment—global occurrences and perspectives. Environ Toxicol Chem. 2016;35(4):823–835. doi: 10.1002/etc.3339. PubMed DOI

Escher BI, Stapleton HM, Schymanski EL. Tracking complex mixtures of chemicals in our changing environment. Science. 2020;367(6476):388–392. doi: 10.1126/science.aay6636. PubMed DOI PMC

Tran NH, Reinhard M, Gin KY-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions—a review. Water Res. 2018;133:182–207. doi: 10.1016/j.watres.2017.12.029. PubMed DOI

Kookana RS, et al. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos Trans R Soc B Biol Sci. 2014 doi: 10.1098/rstb.2013.0586. PubMed DOI PMC

Dsikowitzky L, et al. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India. Sci Total Environ. 2014;485:348–362. doi: 10.1016/j.scitotenv.2014.03.034. PubMed DOI

Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. 2019;16(2):1193–1226. doi: 10.1007/s13762-018-2130-z. DOI

Larsson DGJ. Pollution from drug manufacturing: review and perspectives. Philos Trans R Soc B Biol Sci. 2014 doi: 10.1098/rstb.2013.0571. PubMed DOI PMC

Marathe NP, et al. A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS ONE. 2013 doi: 10.1371/journal.pone.0077310. PubMed DOI PMC

Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ Int. 2016;86:140–149. doi: 10.1016/j.envint.2015.10.015. PubMed DOI

O'Neill J (2014) The review on antimicrobial resistance. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. https://amr-review.org/

Dulio V, et al. The NORMAN association and the European partnership for chemicals risk assessment (PARC): let’s cooperate! Environ Sci Eur. 2020 doi: 10.1186/s12302-020-00375-w. DOI

Stehle S, Schulz R. Agricultural insecticides threaten surface waters at the global scale. Proc Natl Acad Sci USA. 2015;112(18):5750–5755. doi: 10.1073/pnas.1500232112. PubMed DOI PMC

Sposito JCV, et al. Emerging contaminants in Brazilian rivers: occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere. 2018;209:696–704. doi: 10.1016/j.chemosphere.2018.06.046. PubMed DOI

Guruge KS, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci Total Environ. 2019;690:683–695. doi: 10.1016/j.scitotenv.2019.07.042. PubMed DOI

Aubakirova B, Beisenova R, Boxall ABA. Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan. Integr Environ Assess Manag. 2017;13(5):832–839. doi: 10.1002/ieam.1895. PubMed DOI

Ogunbanwo OM, et al. High concentrations of pharmaceuticals in a Nigerian river catchment. Environ Toxicol Chem. 2020 doi: 10.1002/etc.4879. PubMed DOI

Kandie FJ, et al. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci Total Environ. 2020 doi: 10.1016/j.scitotenv.2020.136748. PubMed DOI

Ferronato N, Torretta V. Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health. 2019 doi: 10.3390/ijerph16061060. PubMed DOI PMC

Brooks AL, Wang SL, Jambeck JR. The Chinese import ban and its impact on global plastic waste trade. Sci Adv. 2018 doi: 10.1126/sciadv.aat0131. PubMed DOI PMC

Fekadu S, et al. Pharmaceuticals in freshwater aquatic environments: a comparison of the African and European challenge. Sci Total Environ. 2019;654:324–337. doi: 10.1016/j.scitotenv.2018.11.072. PubMed DOI

K'Oreje KO, et al. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: literature review and a look ahead. J Environ Manag. 2020 doi: 10.1016/j.jenvman.2019.109752. PubMed DOI

Ng CA, Goetz N. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect. 2017;125(1):1–7. doi: 10.1289/EHP168. PubMed DOI PMC

Ecobichon DJ. Pesticide use in developing countries. Toxicology. 2001;160(1–3):27–33. doi: 10.1016/s0300-483x(00)00452-2. PubMed DOI

Kümmerer K et al (2021) Key Characteristics of sustainable chemistry. towards a common understanding of sustainable chemistry. International Sustainable Chemistry Collaborative Centre. https://www.isc3.org/fileadmin/user_upload/Documentations_Report_PDFs/ISC3_Sustainable_Chemistry_key_characteristics_20210113.pdf

Fantke P, et al. Transition to sustainable chemistry through digitalization. Chem. 2021;7(11):2866–2882. doi: 10.1016/j.chempr.2021.09.012. DOI

Kümmerer K, et al. A path to clean water. Science. 2018;361(6399):222–224. doi: 10.1126/science.aau2405. PubMed DOI

Wang ZY, et al. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ Sci Technol. 2020;54(5):2575–2584. doi: 10.1021/acs.est.9b06379. PubMed DOI

Pan YT, et al. Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environ Sci Technol. 2018;52(14):7621–7629. doi: 10.1021/acs.est.8b00829. PubMed DOI

Gago-Ferrero P, et al. Wide-scope target screening of > 2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRIVIS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J Hazard Mater. 2020 doi: 10.1016/j.jhazmat.2019.121712. PubMed DOI

Brack W, et al. High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environ Sci Eur. 2019;31(1):62. doi: 10.1186/s12302-019-0230-0. DOI

Kortenkamp A, Faust M. Regulate to reduce chemical mixture risk. Science. 2018;361(6399):224–226. doi: 10.1126/science.aat9219. PubMed DOI

Schymanski EL, Williams AJ. Open science for identifying “known unknown” chemicals. Environ Sci Technol. 2017;51(10):5357–5359. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC

Schymanski EL, Bolton EE. FAIR chemical structures in the Journal of Cheminformatics. J Cheminform. 2021;13(1):50. doi: 10.1021/acs.est.7b01908. PubMed DOI PMC

Alygizakis NA, et al. NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. Trac-Trends Anal Chem. 2019;115:129–137. doi: 10.1016/j.trac.2019.04.008. DOI

Slobodnik J, et al. Establish data infrastructure to compile and exchange environmental screening data on a European scale. Environ Sci Eur. 2019;31(1):65. doi: 10.1186/s12302-019-0237-6. DOI

Williams AJ, et al. Sourcing data on chemical properties and hazard data from the US-EPA CompTox chemicals dashboard: a practical guide for human risk assessment. Environ Int. 2021 doi: 10.1016/j.envint.2021.106566. PubMed DOI PMC

Kim S, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021;49(D1):D1388–D1395. doi: 10.1093/nar/gkaa971. PubMed DOI PMC

Brack W, et al. Effect-based methods are key. The European collaborative project SOLUTIONS recommends integrating effect-based methods for diagnosis and monitoring of water quality. Environ Sci Eur. 2019;31(1):10. doi: 10.1186/s12302-019-0192-2. DOI

Caballero-Casero N, et al. Towards harmonised criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring. Trac-Trends Anal Chem. 2021 doi: 10.1016/j.trac.2021.116201. DOI

Bopp SK, et al. Current EU research activities on combined exposure to multiple chemicals. Environ Int. 2018;120:544–562. doi: 10.1016/j.envint.2018.07.037. PubMed DOI PMC

Drakvik E, et al. Statement on advancing the assessment of chemical mixtures and their risks for human health and the environment. Environ Int. 2020;134:105267. doi: 10.1016/j.envint.2019.105267. PubMed DOI PMC

Posthuma L, et al. Improved component-based methods for mixture risk assessment are key to characterize complex chemical pollution in surface waters. Environ Sci Eur. 2019;31(1):70. doi: 10.1016/j.envint.2019.105267. DOI

Cousins IT, et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ Sci Process Impacts. 2019;21(11):1803–1815. doi: 10.1039/c9em00163h. PubMed DOI PMC

American Veterinary Medical Association . One health: a new professional imperative. Schaumburg: American Veterinary Medical Association; 2008.

Gunnarsson L, et al. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol. 2008;42(15):5807–5813. doi: 10.1021/es8005173. PubMed DOI

Edwards SW, et al. Adverse outcome pathways-organizing toxicological information to improve decision making. J Pharmacol Exp Ther. 2016;356(1):170–181. doi: 10.1124/jpet.115.228239. PubMed DOI

United Nations Environment Programme (2019) Global chemicals outlook II. From legacies to innovative solutions. Implementing the 2030 agenda for sustainable development. https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions

Landrigan PJ, et al. The lancet commission on pollution and health. Lancet. 2018;391(10119):462–512. doi: 10.1016/S0140-6736(17)32345-0. PubMed DOI

Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet. 2006;368(9553):2167–2178. doi: 10.1016/S0140-6736(06)69665-7. PubMed DOI

Martin OV, et al. A human mixture risk assessment for neurodevelopmental toxicity associated with polybrominated diphenyl ethers used as flame retardants. Environ Health Perspect. 2017;125(8):087016. doi: 10.1289/EHP826. PubMed DOI PMC

Skakkebaek NE, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96(1):55–97. doi: 10.1152/physrev.00017.2015. PubMed DOI PMC

Mocarelli P, et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116(1):70–77. doi: 10.1289/ehp.10399. PubMed DOI PMC

Karwacka A, et al. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence. Hum Fertil. 2019;22(1):2–25. doi: 10.1080/14647273.2017.1358828. PubMed DOI

Vorosmarty CJ, et al. Global threats to human water security and river biodiversity. Nature. 2010;467(7315):555–561. doi: 10.1038/nature09440. PubMed DOI

Groh K, et al. Anthropogenic chemicals as underestimated drivers of biodiversity loss: scientific and societal implications. Environ Sci Technol. 2022;56:707–710. doi: 10.1021/acs.est.1c08399. PubMed DOI

Malaj E, et al. Organic chemicals jeopardise freshwater ecosystems health on the continental scale. Proc Natl Acad Sci. 2014;111(26):9549–9554. doi: 10.1073/pnas.1321082111. PubMed DOI PMC

Lemm JU, et al. Multiple stressors determine river ecological status at the European scale: towards an integrated understanding of river status deterioration. Glob Change Biol. 2021;27(9):1962–1975. doi: 10.1111/gcb.15504. PubMed DOI

Desforges JP, et al. Predicting global killer whale population collapse from PCB pollution. Science. 2018;361(6409):1373–1376. doi: 10.1126/science.aat1953. PubMed DOI

Jobling S, et al. Widespread sexual disruption in wild fish. Environ Sci Technol. 1998;32(17):2498–2506. doi: 10.1021/es9710870. DOI

Kidd KA, et al. Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA. 2007;104(21):8897–8901. doi: 10.1073/pnas.0609568104. PubMed DOI PMC

Secretariat for the Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (2008) Decision guidance document for tributyltin compounds. United Nations Environment Programme

Oehlmann J, et al. Endocrine disruption in prosobranch molluscs: evidence and ecological relevance. Ecotoxicology. 2007;16(1):29–43. doi: 10.1007/s10646-006-0109-x. PubMed DOI

Oetken M, et al. Evidence for endocrine disruption in invertebrates. In: Jeon KW, et al., editors. International review of cytology—a survey of cell biology. New York: Academic Press; 2004. pp. 1–44. PubMed

Machate O, et al. Evidence for antifouling biocides as one of the limiting factors for the recovery of macrophyte communities in lakes of Schleswig-Holstein. Environ Sci Eur. 2021;33(1):57. doi: 10.1186/s12302-021-00500-3. DOI

Sayer CD, et al. TBT causes regime shift in shallow lakes. Environ Sci Technol. 2006;40(17):5269–5275. doi: 10.1021/es060161o. PubMed DOI

Hooper DU, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75(1):3–35. doi: 10.1890/04-0922. DOI

Newbold T, et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science. 2016;353(6296):288–291. doi: 10.1126/science.aaf2201. PubMed DOI

Hallmann CA, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE. 2017 doi: 10.1371/journal.pone.0185809. PubMed DOI PMC

Mineau P, Whiteside M. Pesticide acute toxicity is a better correlate of US grassland bird declines than agricultural intensification. PLoS ONE. 2013 doi: 10.1371/journal.pone.0057457. PubMed DOI PMC

Hallmann CA, et al. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature. 2014;511(7509):341. doi: 10.1038/nature13531. PubMed DOI

Oaks JL, et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature. 2004;427(6975):630–633. doi: 10.1038/nature02317. PubMed DOI

Balmford A. Pollution, politics, and vultures. Science. 2013;339(6120):653–654. doi: 10.1126/science.1234193. PubMed DOI

Becker JM, et al. Pesticide pollution in freshwater paves the way for schistosomiasis transmission. Sci Rep. 2020;10(1):3650. doi: 10.1038/s41598-020-60654-7. PubMed DOI PMC

Johnston EL, Mayer-Pinto M, Crowe TP. Chemical contaminant effects on marine ecosystem functioning. J Appl Ecol. 2015;52(1):140–149. doi: 10.1111/1365-2664.12355. DOI

Wang J, et al. Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. J Environ Manag. 2021 doi: 10.1016/j.jenvman.2020.111873. PubMed DOI

Meybeck M, et al. Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005) Sci Total Environ. 2007;375(1–3):204–231. doi: 10.1016/j.scitotenv.2006.12.017. PubMed DOI

Posthuma L, et al. Exploring the ‘solution space’ is key: SOLUTIONS recommends an early-stage assessment of options to protect and restore water quality against chemical pollution. Environ Sci Eur. 2019;31(1):73. doi: 10.1186/s12302-019-0253-6. DOI

Backhaus T, Scheringer M, Wang ZY. Developing SAICM into a framework for the international governance of chemicals throughout their Lifecycle: Looking beyond 2020. Integr Environ Assess Manag. 2018;14(4):432–433. doi: 10.1002/ieam.4052. PubMed DOI

McAlister MM, et al. Systems thinking for effective interventions in global environmental health. Environ Sci Technol. 2022;56(2):732–738. doi: 10.1021/acs.est.1c04110. PubMed DOI PMC

Fantke P, et al. Exposure and toxicity characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. Int J Life Cycle Assess. 2021;26(5):899–915. doi: 10.1007/s11367-021-01889-y. PubMed DOI PMC

Aurisano N, et al. Chemicals of concern in plastic toys. Environ Int. 2021 doi: 10.1016/j.envint.2020.106194. PubMed DOI

Huang L, et al. Chemicals of concern in building materials: a high-throughput screening. J Hazard Mater. 2022 doi: 10.1016/j.jhazmat.2021.127574. PubMed DOI

Scheringer M. Long-range transport of organic chemicals in the environment. Environ Toxicol Chem. 2009;28(4):677–690. doi: 10.1897/08-324R.1. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...