• This record comes from PubMed

Context transcription factors establish cooperative environments and mediate enhancer communication

. 2024 Oct ; 56 (10) : 2199-2212. [epub] 20241003

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
310030_197082 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
860002 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
895426 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
101026623 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
2020-895 European Molecular Biology Organization (EMBO)
1139-2019 European Molecular Biology Organization (EMBO)

Links

PubMed 39363017
PubMed Central PMC11525195
DOI 10.1038/s41588-024-01892-7
PII: 10.1038/s41588-024-01892-7
Knihovny.cz E-resources

Many enhancers control gene expression by assembling regulatory factor clusters, also referred to as condensates. This process is vital for facilitating enhancer communication and establishing cellular identity. However, how DNA sequence and transcription factor (TF) binding instruct the formation of high regulatory factor environments remains poorly understood. Here we developed a new approach leveraging enhancer-centric chromatin accessibility quantitative trait loci (caQTLs) to nominate regulatory factor clusters genome-wide. By analyzing TF-binding signatures within the context of caQTLs and comparing episomal versus endogenous enhancer activities, we discovered a class of regulators, 'context-only' TFs, that amplify the activity of cell type-specific caQTL-binding TFs, that is, 'context-initiator' TFs. Similar to super-enhancers, enhancers enriched for context-only TF-binding sites display high coactivator binding and sensitivity to bromodomain-inhibiting molecules. We further show that binding sites for context-only and context-initiator TFs underlie enhancer coordination, providing a mechanistic rationale for how a loose TF syntax confers regulatory specificity.

See more in PubMed

Lambert, S. A. et al. The human transcription factors. Cell172, 650–665 (2018). PubMed

Rube, H. T. et al. Prediction of protein–ligand binding affinity from sequencing data with interpretable machine learning. Nat. Biotechnol.40, 1520–1527 (2022). PubMed PMC

Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP–seq analysis. Nucleic Acids Res.46, D252–D259 (2018). PubMed PMC

Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res.50, D165–D173 (2022). PubMed PMC

Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell158, 1431–1443 (2014). PubMed PMC

Slattery, M. et al. Absence of a simple code: how transcription factors read the genome. Trends Biochem. Sci.39, 381–399 (2014). PubMed PMC

Kaluscha, S. et al. Evidence that direct inhibition of transcription factor binding is the prevailing mode of gene and repeat repression by DNA methylation. Nat. Genet.54, 1895–1906 (2022). PubMed PMC

Neumayr, C. et al. Differential cofactor dependencies define distinct types of human enhancers. Nature606, 406–413 (2022). PubMed PMC

Jolma, A. et al. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature527, 384–388 (2015). PubMed

Isbel, L., Grand, R. S. & Schübeler, D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet.23, 728–740 (2022). PubMed

Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat. Genet.53, 354–366 (2021). PubMed PMC

de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR predicts enhancer activity from DNA sequence and enables the de novo design of synthetic enhancers. Nat. Genet.54, 613–624 (2022). PubMed

Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods18, 1196–1203 (2021). PubMed PMC

Karbalayghareh, A., Sahin, M. & Leslie, C. S. Chromatin interaction—aware gene regulatory modeling with graph attention networks. Genome Res.32, 930–944 (2022). PubMed PMC

Zhang, Z., Feng, F., Qiu, Y. & Liu, J. A generalizable framework to comprehensively predict epigenome, chromatin organization, and transcriptome. Nucleic Acids Res.51, 5931–5947 (2023). PubMed PMC

Karollus, A., Mauermeier, T. & Gagneur, J. Current sequence-based models capture gene expression determinants in promoters but mostly ignore distal enhancers. Genome Biol.24, 56 (2023). PubMed PMC

Sasse, A. et al. Benchmarking of deep neural networks for predicting personal gene expression from DNA sequence highlights shortcomings. Nat. Genet.55, 2060–2064 (2023). PubMed

Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol. Cell.83, 373–392 (2023). PubMed PMC

Liu, Z. & Tjian, R. Visualizing transcription factor dynamics in living cells. J. Cell Biol.217, 1181–1191 (2018). PubMed PMC

Neikes, H. K. et al. Quantification of absolute transcription factor binding affinities in the native chromatin context using BANC-seq. Nat. Biotechnol.41, 1801–1809 (2023). PubMed

Simicevic, J. & Deplancke, B. Transcription factor proteomics—tools, applications, and challenges. Proteomics17, 1600317 (2017). PubMed

Kribelbauer, J. F., Rastogi, C., Bussemaker, H. J. & Mann, R. S. Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes. Annu. Rev. Cell Dev. Biol.35, 357–379 (2019). PubMed PMC

Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife3, e04236 (2014). PubMed PMC

Mir, M. et al. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife7, e40497 (2018). PubMed PMC

Tsai, A. et al. Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife6, e28975 (2017). PubMed PMC

Wollman, A. J. et al. Transcription factor clusters regulate genes in eukaryotic cells. eLife6, e27451 (2017). PubMed PMC

Hayward-Lara, G., Fischer, M. D. & Mir, M. Dynamic microenvironments shape nuclear organization and gene expression. Curr. Opin. Genet. Dev.86, 102177 (2024). PubMed PMC

Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science361, eaar3958 (2018). PubMed PMC

Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell175, 1842–1855 (2018). PubMed PMC

Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell153, 307–319 (2013). PubMed PMC

Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell155, 934–947 (2013). PubMed PMC

Uyehara, C. M. & Apostolou, E. 3D enhancer-promoter interactions and multi-connected hubs: organizational principles and functional roles. Cell Rep.42, 112068 (2023). PubMed PMC

Cheng, L., De, C., Li, J. & Pertsinidis, A. Mechanisms of transcription control by distal enhancers from high-resolution single-gene imaging. Preprint at bioRxiv10.1101/2023.03.19.533190 (2023).

Brzovic, P. S. et al. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol. Cell44, 942–953 (2011). PubMed PMC

Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science361, eaar2555 (2018). PubMed PMC

Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell75, 549–561 (2019). PubMed PMC

Morin, J. A. et al. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nat. Phys.18, 271–276 (2022).

Meeussen, J. V. W. et al. Transcription factor clusters enable target search but do not contribute to target gene activation. Nucleic Acids Res.51, 5449–5468 (2023). PubMed PMC

Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell82, 2084–2097 (2022). PubMed

Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell82, 1878–1893 (2022). PubMed

Alberti, S., Gladfelter, A. & Mittag, T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell176, 419–434 (2019). PubMed PMC

Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature482, 390–394 (2012). PubMed PMC

Kumasaka, N., Knights, A. J. & Gaffney, D. J. Fine-mapping cellular QTLs with RASQUAL and ATAC–seq. Nat. Genet.48, 206–213 (2016). PubMed PMC

Gate, R. E. et al. Genetic determinants of co-accessible chromatin regions in activated T cells across humans. Nat. Genet.50, 1140–1150 (2018). PubMed PMC

Kumasaka, N., Knights, A. J. & Gaffney, D. J. High-resolution genetic mapping of putative causal interactions between regions of open chromatin. Nat. Genet.51, 128–137 (2019). PubMed PMC

Llimos, G. et al. A leukemia-protective germline variant mediates chromatin module formation via transcription factor nucleation. Nat. Commun.13, 2042 (2022). PubMed PMC

Van Mierlo, G., Pushkarev, O., Kribelbauer, J. F. & Deplancke, B. Chromatin modules and their implication in genomic organization and gene regulation. Trends Genet.39, 140–153 (2023). PubMed

Zhao, Y. et al. ‘Stripe’ transcription factors provide accessibility to co-binding partners in mammalian genomes. Mol. Cell82, 3398–3411 (2022). PubMed PMC

Zamudio, A. V. et al. Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell76, 753–766 (2019). PubMed PMC

Meuleman, W. et al. Index and biological spectrum of human DNase I hypersensitive sites. Nature584, 244–251 (2020). PubMed PMC

Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein-phenotype interactions. Nat. Commun.11, 124 (2020). PubMed PMC

Van Arensbergen, J. et al. Genome-wide mapping of autonomous promoter activity in human cells. Nat. Biotechnol.35, 145–153 (2017). PubMed PMC

Staller, M. V. et al. Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains. Cell Syst.13, 334–345 (2022). PubMed PMC

Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science339, 1074–1077 (2013). PubMed

Minderjahn, J. et al. Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat. Commun.11, 402 (2020). PubMed PMC

Van Mierlo, G. et al. Predicting protein condensate formation using machine learning. Cell Rep.34, 108705 (2021). PubMed

Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell179, 470–484.e21 (2019). PubMed PMC

Ott, C. J. et al. Enhancer architecture and essential core regulatory circuitry of chronic lymphocytic leukemia. Cancer Cell34, 982–995 (2018). PubMed PMC

Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell153, 320–334 (2013). PubMed PMC

Chapuy, B. et al. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. Cancer Cell24, 777–790 (2013). PubMed PMC

Crump, N. T. et al. BET inhibition disrupts transcription but retains enhancer-promoter contact. Nat. Commun.12, 223 (2021). PubMed PMC

Chen, C. et al. SEA version 3.0: a comprehensive extension and update of the super-enhancer archive. Nucleic Acids Res.48, D198–D203 (2020). PubMed PMC

Blayney, J. W. et al. Super-enhancers include classical enhancers and facilitators to fully activate gene expression. Cell186, 5826–5839 (2023). PubMed PMC

Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. Science375, 566–570 (2022). PubMed PMC

Brosh, R. et al. Synthetic regulatory genomics uncovers enhancer context dependence at the Sox2 locus. Mol. Cell83, 1140–1152 (2023). PubMed PMC

Lyons, H. et al. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell186, 327–345 (2023). PubMed PMC

Wang, Q. et al. Exploring epigenomic datasets by ChIPseeker. Curr. Protoc.2, e585 (2022). PubMed

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at 10.48550/arXiv.1303.3997 (2013).

Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC

Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res.44, W160–W165 (2016). PubMed PMC

Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics25, 1422–1423 (2009). PubMed PMC

Van den Berge, K. et al. Normalization benchmark of ATAC–seq datasets shows the importance of accounting for GC-content effects. Cell Rep. Methods2, 100321 (2022). PubMed PMC

Luo, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res.48, D882–D889 (2020). PubMed PMC

Picard toolkit. GitHubhttps://broadinstitute.github.io/picard/ (2019).

Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at 10.48550/arXiv.1207.3907 (2012).

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). PubMed PMC

Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res.47, e47 (2019). PubMed PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC

Gardeux, V. & Jukri. DeplanckeLab/Context-TFs: initial release (v1.0). Zenodo10.5281/zenodo.12732162 (2024).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...