Modeling seasonal immune dynamics of honey bee (Apis mellifera L.) response to injection of heat-killed Serratia marcescens
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39365765
PubMed Central
PMC11452037
DOI
10.1371/journal.pone.0311415
PII: PONE-D-24-22912
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- buněčná imunita MeSH
- hemocyty imunologie MeSH
- humorální imunita MeSH
- roční období * MeSH
- Serratia marcescens * imunologie MeSH
- včely imunologie mikrobiologie MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The honey bee, Apis mellifera L., is one of the main pollinators worldwide. In a temperate climate, seasonality affects the life span, behavior, physiology, and immunity of honey bees. In consequence, it impacts their interaction with pathogens and parasites. In this study, we used Bayesian statistics and modeling to examine the immune response dynamics of summer and winter honey bee workers after injection with the heat-killed bacteria Serratia marcescens, an opportunistic honey bee pathogen. We investigated the humoral and cellular immune response at the transcriptional and functional levels using qPCR of selected immune genes, antimicrobial activity assay, and flow cytometric analysis of hemocyte concentration. Our data demonstrate increased antimicrobial activity at transcriptional and functional levels in summer and winter workers after injection, with a stronger immune response in winter bees. On the other hand, an increase in hemocyte concentration was observed only in the summer bee population. Our results indicate that the summer population mounts a cellular response when challenged with heat-killed S. marcescens, while winter honey bees predominantly rely on humoral immune reactions. We created a model describing the honey bee immune response dynamics to bacteria-derived components by applying Bayesian statistics to our data. This model can be employed in further research and facilitate the investigating of the honey bee immune system and its response to pathogens.
Department of Biochemistry Faculty of Science Palacký University Olomouc Olomouc Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Münch D, Kreibich CD, Amdam G v. Aging and its modulation in a long-lived worker caste of the honey bee. Journal of Experimental Biology. 2013. May;216(9):1638–49. PubMed PMC
Kunc M, Dobeš P, Hurychová J, Vojtek L, Poiani SB, Danihlík J, et al.. The year of the honey bee (Apis mellifera L.) with respect to its physiology and immunity: A search for biochemical markers of longevity. Insects. 2019. Aug 1;10(8). doi: 10.3390/insects10080244 PubMed DOI PMC
Dostálková S, Dobeš P, Kunc M, Hurychová J, Škrabišová M, Petřivalský M, et al.. Winter honeybee (Apis mellifera) populations show greater potential to induce immune responses than summer populations after immune stimuli. Journal of Experimental Biology. 2021. Feb 1;224(3). doi: 10.1242/jeb.232595 PubMed DOI
Danihlík J, Aronstein K, Petřivalský M. Antimicrobial peptides: A key component of honey bee innate immunity. Vol. 54, Journal of Apicultural Research. Taylor and Francis Ltd; 2015. p. 123–36.
Simone-Finstrom M. Social Immunity and the Superorganism: Behavioral Defenses Protecting Honey Bee Colonies from Pathogens and Parasites. Bee World. 2017. Jan 2;94(1):21–9.
Fowler AE, Irwin RE, Adler LS. Parasite defense mechanisms in bees: behavior, immunity, antimicrobials, and symbionts. Emerg Top Life Sci. 2020. Jul 2;4(1):59–76. doi: 10.1042/ETLS20190069 PubMed DOI
Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MAY, et al.. Varroa destructor: A Complex Parasite, Crippling Honey Bees Worldwide. Vol. 36, Trends in Parasitology. Elsevier Ltd; 2020. p. 592–606. PubMed
Bruce Krejčí A, Votýpková K, Lukeš J, Votýpka J. Varroa destructor. Vol. 39, Trends in Parasitology. Elsevier Ltd; 2023. p. 487–8. PubMed
Kuster RD, Boncristiani HF, Rueppell O. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae. Journal of Experimental Biology. 2014. May 15;217(10):1710–8. doi: 10.1242/jeb.097766 PubMed DOI
Gliński Z, Jarosz J. Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host. Apidologie. 1992;23(1):25–31.
Kanbar G, Engels W. Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res. 2003. Aug 1;90(5):349–54. doi: 10.1007/s00436-003-0827-4 PubMed DOI
Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, et al.. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences. 2019. Jan 29;116(5):1792–801. PubMed PMC
Burritt NL, Foss NJ, Neeno-Eckwall EC, Church JO, Hilger AM, Hildebrand JA, et al.. Sepsis and hemocyte loss in honey bees (Apis mellifera) Infected with serratia marcescens strain sicaria. PLoS One. 2016. Dec 1;11(12). doi: 10.1371/journal.pone.0167752 PubMed DOI PMC
El Sanousi S.M., El Sarag M.S.A., Sumaia E. Mohamed. Properties of Serratia marcescens Isolated from Diseased Honeybee (Apis mellifera) Larvae. Vol. 133, Journal of General Microbiology. 1987.
Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. Curr Opin Insect Sci. 2018. Apr;26:89–96. doi: 10.1016/j.cois.2018.02.008 PubMed DOI
Raymann K, Moran NA. The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci. 2018. Apr;26:97–104. doi: 10.1016/j.cois.2018.02.012 PubMed DOI PMC
Al Naggar Y, Singavarapu B, Paxton RJ, Wubet T. Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. Science of The Total Environment. 2022. Nov;849:157941. doi: 10.1016/j.scitotenv.2022.157941 PubMed DOI
Al Naggar Y, Wubet T. Chronic exposure to pesticides disrupts the bacterial and fungal co-existence and the cross-kingdom network characteristics of honey bee gut microbiome. Science of The Total Environment. 2024. Jan;906:167530. doi: 10.1016/j.scitotenv.2023.167530 PubMed DOI
Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017. Mar 14;15(3):e2001861. doi: 10.1371/journal.pbio.2001861 PubMed DOI PMC
Braglia C, Alberoni D, Garrido PM, Porrini MP, Baffoni L, Scott D, et al.. Vairimorpha (Nosema) ceranae can promote Serratia development in honeybee gut: an underrated threat for bees? Front Cell Infect Microbiol. 2024. May 13;14. doi: 10.3389/fcimb.2024.1323157 PubMed DOI PMC
Raymann K, Coon KL, Shaffer Z, Salisbury S, Moran NA. Pathogenicity of Serratia marcescens Strains in Honey Bees. McFall-Ngai MJ, editor. mBio [Internet]. 2018. Nov 7;9(5). Available from: https://journals.asm.org/doi/10.1128/mBio.01649-18 PubMed DOI PMC
Laughton AM, Boots M, Siva-Jothy MT. The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge. J Insect Physiol. 2011. Jul;57(7):1023–32. doi: 10.1016/j.jinsphys.2011.04.020 PubMed DOI
Chan QWT, Melathopoulos AP, Pernal SF, Foster LJ. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics. 2009. Aug 21;10. doi: 10.1186/1471-2164-10-387 PubMed DOI PMC
Randolt K, Gimple O, Geissendörfer J, Reinders J, Prusko C, Mueller MJ, et al.. Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Arch Insect Biochem Physiol. 2008. Dec;69(4):155–67. doi: 10.1002/arch.20269 PubMed DOI
van de Schoot R, Depaoli S, King R, Kramer B, Märtens K, Tadesse MG, et al.. Bayesian statistics and modelling. Nature Reviews Methods Primers. 2021. Jan 14;1(1):1.
Kunc M, Dobeš P, Ward R, Lee S, Čegan R, Dostálková S, et al.. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. Insect Biochem Mol Biol. 2023. Jan;152:103877. doi: 10.1016/j.ibmb.2022.103877 PubMed DOI
Evans JD, Schwarz RS, Chen YP, Budge G, Cornman RS, De la Rua P, et al.. Standard methods for molecular research in Apis mellifera. J Apic Res [Internet]. 2013. Jan 2;52(4):1–54. Available from: https://www.tandfonline.com/doi/full/10.3896/IBRA.1.52.4.11 DOI
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001. May 1;29(9):45e–45. doi: 10.1093/nar/29.9.e45 PubMed DOI PMC
Danihlík J, Šebela M, Petřivalský M, Lenobel R. A sensitive quantification of the peptide apidaecin 1 isoforms in single bee tissues using a weak cation exchange pre-separation and nanocapillary liquid chromatography coupled with mass spectrometry. J Chromatogr A. 2014. Dec;1374:134–44. doi: 10.1016/j.chroma.2014.11.041 PubMed DOI
Marringa WJ, Krueger MJ, Burritt NL, Burritt JB. Honey Bee Hemocyte Profiling by Flow Cytometry. PLoS One. 2014. Oct 6;9(10):e108486. doi: 10.1371/journal.pone.0108486 PubMed DOI PMC
Salvatier J, Wiecki T v., Fonnesbeck C. Probabilistic programming in Python using PyMC3. PeerJ Comput Sci. 2016. Apr 6;2:e55.
Hoffman MD, Gelman A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. 2011 Nov 17; http://arxiv.org/abs/1111.4246
Gätschenberger H, Azzami K, Tautz J, Beier H. Antibacterial Immune Competence of Honey Bees (Apis mellifera) Is Adapted to Different Life Stages and Environmental Risks. PLoS One. 2013. Jun 17;8(6). doi: 10.1371/journal.pone.0066415 PubMed DOI PMC
Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P. Apidaecins: antibacterial peptides from honeybees. Vol. 8, The EMBO Journal. 1989. doi: 10.1002/j.1460-2075.1989.tb08368.x PubMed DOI PMC
Casteels P, Ampe C, Riviere L, van Damme J, Elicone C, Fleming M, et al.. Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). Eur J Biochem. 1990;187(2):381–6. doi: 10.1111/j.1432-1033.1990.tb15315.x PubMed DOI
Casteels P, Ampe C, Jacobs F, Tempst P. Functional and chemical characterization of hymenoptaecin, an antibacterial polypeptide that is infection-inducible in the honeybee (Apis mellifera). Journal of Biological Chemistry. 1993;268(10):7044–54. PubMed
Casteels-Josson K, Zhang W, Capaci T, Casteels P, Tempst P. Acute transcriptional response of the honeybee peptide-antibiotics gene repertoire and required post-translational conversion of the precursor structures. Journal of Biological Chemistry. 1994. Nov 18;269(46):28569–75. PubMed
Lourenço AP, Guidugli-Lazzarini KR, Freitas FCP, Bitondi MMG, Simões ZLP. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. Insect Biochem Mol Biol. 2013. May;43(5):474–82. doi: 10.1016/j.ibmb.2013.03.001 PubMed DOI
Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, et al.. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology. 2006. doi: 10.1111/j.1365-2583.2006.00682.x PubMed DOI PMC
Zhao Y, Heerman M, Peng W, Evans JD, Rose R, Degrandi-Hoffman G, et al.. The dynamics of Deformed wing virus concentration and host defensive gene expression after varroa mite parasitism in honey bees, Apis mellifera. Insects. 2019. Jan 1;10(1). doi: 10.3390/insects10010016 PubMed DOI PMC
Casteels-Josson K, Capaci T, Casteels P, Tempst P. Apidaecin multipeptide precursor structure: a putative mechanism for amplification of the insect antibacterial response. Vol. 12, The EMBO Journal. 1993. doi: 10.1002/j.1460-2075.1993.tb05801.x PubMed DOI PMC
Lourenço AP, Martins JR, Torres FAS, Mackert A, Aguiar LR, Hartfelder K, et al.. Immunosenescence in honey bees (Apis mellifera L.) is caused by intrinsic senescence and behavioral physiology. Exp Gerontol. 2019. May 1;119:174–83. doi: 10.1016/j.exger.2019.02.005 PubMed DOI
Richard FJ, Holt HL, Grozinger CM. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics. 2012. Oct 16;13(1). doi: 10.1186/1471-2164-13-558 PubMed DOI PMC
Schlüns H, Crozier RH. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Mol Biol. 2007. Dec;16(6):753–9. doi: 10.1111/j.1365-2583.2007.00768.x PubMed DOI
Azzami K, Ritter W, Tautz J, Beier H. Infection of honey bees with acute bee paralysis virus does not trigger humoral or cellular immune responses. Arch Virol. 2012. Apr;157(4):689–702. doi: 10.1007/s00705-012-1223-0 PubMed DOI PMC
Honti V, Csordás G, Márkus R, Kurucz É, Jankovics F, Andó I. Cell lineage tracing reveals the plasticity of the hemocyte lineages and of the hematopoietic compartments in Drosophila melanogaster. Mol Immunol. 2010. Jul;47(11–12):1997–2004. doi: 10.1016/j.molimm.2010.04.017 PubMed DOI
King JG, Hillyer JF. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biol [Internet]. 2013. Dec 30;11(1):55. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/1741-7007-11-55. PubMed DOI PMC