Injury-induced myosin-specific tissue-resident memory T cells drive immune checkpoint inhibitor myocarditis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NA
Katherine E. Welsh Fellowship
R01HL118183
HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
R01 HL136586
NHLBI NIH HHS - United States
R01 HL118183
NHLBI NIH HHS - United States
F31AR077406
HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
19TPA34910007
American Heart Association (AHA)
NA
Global Autoimmune Institute (GAI)
NA
Delta Omega Scholarship
T32 AI007417
NIAID NIH HHS - United States
20TPA35490421
American Heart Association (AHA)
F31 AR077406
NIAMS NIH HHS - United States
5T32AI007417-25
HHS | NIH (NIH)
NA
Matthew Poyner MVP Memorial Myocarditis Research Fund
R01HL136586
HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
2T32AI007417-26
HHS | NIH (NIH)
NA
2018 Rhett Lundy Memorial Research Fellowship from the Myocarditis Foundation
23EIA1040103
American Heart Association (AHA)
PubMed
39378095
PubMed Central
PMC11494310
DOI
10.1073/pnas.2323052121
Knihovny.cz E-zdroje
- Klíčová slova
- ICI-myocarditis, PD-1, cardiac immunology, tissue-resident memory T cells,
- MeSH
- antigeny CD279 metabolismus MeSH
- CD antigeny MeSH
- diferenciační antigeny T-lymfocytů metabolismus imunologie MeSH
- inhibitory kontrolních bodů * farmakologie MeSH
- lektiny typu C metabolismus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myokard imunologie patologie metabolismus MeSH
- myokarditida * imunologie patologie metabolismus MeSH
- myosiny metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- paměťové T-buňky * imunologie metabolismus MeSH
- srdeční myosiny imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD279 MeSH
- CD antigeny MeSH
- CD69 antigen MeSH Prohlížeč
- diferenciační antigeny T-lymfocytů MeSH
- inhibitory kontrolních bodů * MeSH
- lektiny typu C MeSH
- myosiny MeSH
- Pdcd1 protein, mouse MeSH Prohlížeč
- srdeční myosiny MeSH
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Zobrazit více v PubMed
Freeman G. J., et al. , Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000). PubMed PMC
Chambers C. A., Sullivan T. J., Allison J. P., Lymphoproliferation in CTLA-4–deficient mice is mediated by costimulation-dependent activation of CD4+ T cells Immunity 7, 885–895 (1997). PubMed
Ueda H., et al. , Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003). PubMed
Nishimura H., Minato N., Nakano T., Honjo T., Immunological studies on PD-1 deficient mice: Implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998). PubMed
Martins F., et al. , Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019). PubMed
Tan S., Day D., Nicholls S. J., Segelov E., Immune checkpoint inhibitor therapy in oncology: Current uses and future directions: JACC: Cardiooncology state-of-the-art review. JACC CardioOncol. 4, 579–597 (2022). PubMed PMC
Wang D. Y., et al. , Fatal Toxic Effects Associated With Immune Checkpoint Inhibitors. JAMA Oncol. 4, 1721 (2018). PubMed PMC
Dougan M., Luoma A. M., Dougan S. K., Wucherpfennig K. W., Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 184, 1575–1588 (2021). PubMed PMC
Moslehi J. J., Salem J. E., Sosman J. A., Lebrun-Vignes B., Johnson D. B., Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet 91, 933 (2018). PubMed PMC
Palaskas N., Lopez-Mattei J., Durand J. B., Iliescu C., Deswal A., Immune checkpoint inhibitor myocarditis: Pathophysiological characteristics, diagnosis, and treatment. J. Am. Heart Assoc. 9, e013757 (2020). PubMed PMC
Won T., et al. , Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep. 41, 111611 (2022). PubMed PMC
Axelrod M. L., et al. , T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611, 818–826 (2022). PubMed PMC
Cibrián D., Sánchez-Madrid F., CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 47, 946–953 (2017). PubMed PMC
Szabo P. A., Miron M., Farber D. L., Location, location, location: Tissue resident memory T cells in mice and humans. Sci. Immunol. 4, eaas9673 (2019). PubMed PMC
Sasson S. C., Gordon C. L., Christo S. N., Klenerman P., Mackay L. K., Local heroes or villains: Tissue-resident memory T cells in human health and disease. Cell Mol. Immunol. 17, 113–122 (2020). PubMed PMC
Masopust D., Vezys V., Marzo A. L., Lefrançois L., Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001). PubMed
Kumar B. V., et al. , Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017). PubMed PMC
Skon C. N., et al. , Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013). PubMed PMC
Matloubian M., et al. , Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004). PubMed
Reilly E. C., et al. , T RM integrins CD103 and CD49a differentially support adherence and motility after resolution of influenza virus infection. Proc. Natl. Acad. Sci. U.S.A. 117, 12306–12314 (2020). PubMed PMC
Zens K. D., Chen J. K., Farber D. L., Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 1, 85832 (2016). PubMed PMC
Iijima N., Iwasaki A., A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014). PubMed PMC
Mackay L. K., et al. , T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015). PubMed
Fonseca R., et al. , Developmental plasticity allows outside-in immune responses by resident memory T cells. Nat. Immunol. 21, 412–421 (2020). PubMed PMC
Schenkel J. M., et al. , Resident memory CD8 t cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014). PubMed PMC
Ariotti S., et al. , Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014). PubMed
Behr F. M., et al. , Tissue-resident memory CD8+ T cells shape local and systemic secondary T cell responses. Nat. Immunol. 21, 1070–1081 (2020). PubMed
Cheuk S., et al. , CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017). PubMed PMC
Whitley S. K., et al. , Local IL-23 is required for proliferation and retention of skin-resident memory T H 17 cells. Sci. Immunol. 7, eabq3254 (2022). PubMed PMC
Weisberg S. P., et al. , Tissue-resident memory T cells mediate immune homeostasis in the human pancreas through the PD-1/PD-L1 pathway. Cell Rep 29, 3916–3932.e5 (2019). PubMed PMC
Wang Z., et al. , PD-1 hi CD8 + resident memory T cells balance immunity and fibrotic sequelae. Sci. Immunol. 4, eaaw1217 (2019). PubMed PMC
Lv H. J., et al. , Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest. 121, 1561–1573 (2011). PubMed PMC
Delgobo M., et al. , Myocardial milieu favors local differentiation of regulatory T cells. Circ. Res. 132, 565–582 (2023), 10.1161/CIRCRESAHA.122.322183. PubMed DOI
Rieckmann M., et al. , Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest. 129, 4922–4936 (2019). PubMed PMC
Anderson K. G., et al. , Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014). PubMed PMC
Sakaguchi S., et al. Annual review of immunology regulatory T cells and human disease. Ann. Rev. Immunol. 26, 541–566 (2020), 10.1146/annurev-immunol-042718. PubMed DOI
Frizzell H., et al. , Organ-specific isoform selection of fatty acid–binding proteins in tissue-resident lymphocytes. Sci. Immunol. 5, eaay9283 (2020). PubMed
Lin R., et al. , Fatty acid oxidation controls CD8+Tissue-resident memory t-cell survival in gastric adenocarcinoma. Cancer Immunol. Res. 8, 479–492 (2020). PubMed
Hua X., et al. , Single-cell RNA sequencing to dissect the immunological network of autoimmune myocarditis. Circulation 142, 384–400 (2020). PubMed
Milner J. J., et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017). PubMed PMC
Wang D., et al. , The transcription factor Runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity 48, 659–674.e6 (2018). PubMed PMC
Baldeviano G. C., et al. , Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circ. Res. 106, 1646–1655 (2010). PubMed
Myers J. M., et al. , Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight 1, e85851 (2016). PubMed PMC
Tieu R., et al. , Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Sci. Immunol. 8, eadd8454 (2023). PubMed PMC
Krebs C. F., et al. , Pathogen-induced tissue-resident memory TH17 (TRM17) cells amplify autoimmune kidney disease. Sci. Immunol. 5, 4163 (2020). PubMed
Kumar B. V., Connors T. J., Farber D. L., Human T cell development, localization, and function throughout life. Immunity. 48, 202–213 (2018). PubMed PMC
Farber D. L., Yudanin N. A., Restifo N. P., Human memory T cells: Generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014). PubMed PMC
Bracamonte-Baran W., Čiháková D., Cardiac Autoimmunity: Myocarditis. Adv. Exp. Med. Biol. 1003, 187–221 (2017). PubMed PMC
Čiháková D., et al. , Meeting the challenges of myocarditis: New opportunities for prevention, detection, and intervention-a report from the 2021 national heart, lung, and blood institute workshop. J. Clin. Med. 11, 5721 (2022). PubMed PMC
Cabac-Pogorevici I., et al. , Ischaemic cardiomyopathy. Pathophysiological insights, diagnostic management and the roles of revascularisation and device treatment. Gaps and dilemmas in the era of advanced technology. Eur. J. Heart Fail 22, 789–799 (2020). PubMed
Mishra A., Sullivan L., Caligiuri M. A., Molecular pathways: Interleukin-15 signaling in health and in cancer CME staff planners’ disclosures acknowledgment of financial or other support. Clin. Cancer Res. 20, 2044–2050 (2014). PubMed PMC
Steel J. C., Waldmann T. A., Morris J. C., Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol. Sci. 33, 35–41 (2012). PubMed PMC
Jabri B., Abadie V., IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771 (2015). PubMed PMC
Hughes D. M., et al. , The protective role of GATA6+ pericardial macrophages in pericardial inflammation. iScience 27, 110244 (2024), 10.1016/j.isci.2024.110244. PubMed DOI PMC
Deniset J. F., et al. , Gata6+ pericardial cavity macrophages relocate to the injured heart and prevent cardiac fibrosis. Immunity 51, 131–140.e5 (2019). PubMed PMC
Jin H., et al. , Genetic lineage tracing of pericardial cavity macrophages in the injured heart. Circ. Res. 130, 1682–1697 (2022). PubMed
Cihakova D., snRNA-Seq of pericardial cells in human cardiomyopathy. Figshare. https://figshare.com/s/a3c29c74f375c9ae6025. Deposited 25 June 2024.
MacKay L. K., et al. , The developmental pathway for CD103+ CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013). PubMed
Oja A. E., et al. , Trigger-happy resident memory CD4+ T cells inhabit the human lungs. Mucosal Immunol. 11, 654–667 (2018). PubMed
Hombrink P., et al. , Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016). PubMed
Cartier A., Hla T., Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 366, eaar5551 (2019). PubMed PMC
Bankovich A. J., Shiow L. R., Cyster J. G., CD69 suppresses sphingosine 1-phosophate receptor-1 (S1P1) function through interaction with membrane helix 4. J. Biol. Chem. 285, 22328–22337 (2010). PubMed PMC
Bai A., Hu H., Yeung M., Chen J., Krü ppel-Like Factor 2 Controls T Cell Trafficking by Activating L-Selectin (CD62L) and Sphingosine-1-Phosphate Receptor 1 Transcription 1. Immunol. 178, 7632–7639 (2007). PubMed
Steinert E. M., et al. , Quantifying memory CD8 T cells reveals regionalization of immunosurveillance. Cell 161, 737–749 (2015). PubMed PMC
Wu H., et al. , Pathogenic role of tissue-resident memory T cells in autoimmune diseases. Autoimmun. Rev. 17, 906–911 (2018). PubMed
Künzli M., Masopust D., CD4+ T cell memory Nat. Immunol. 2023, 1–12 (2023), 10.1038/s41590-023-01510-4. PubMed DOI PMC
Mueller S. N., Gebhardt T., Carbone F. R., Heath W. R., Memory T cell subsets, migration patterns, and tissue residence. Ann. Rev. Immunol. 31, 137–161 (2013). PubMed
Hondowicz B. D., et al. , Interleukin-2-dependent allergen-specific tissue-resident memory cells drive asthma. Immunity 44, 155–166 (2016). PubMed PMC
Goplen N. P., et al. , Tissue-resident CD8 + T cells drive age-associated chronic lung sequelae after viral pneumonia. Sci. Immunol. 5, eabc4557 (2020). PubMed PMC
Ramosa G. C., et al. , Myocardial aging as a T-cell-mediated phenomenon. Proc. Natl. Acad. Sci. U.S.A. 114, E2420–E2429 (2017). PubMed PMC
Ashour D., et al. , An interferon gamma response signature links myocardial aging and immunosenescence. Cardiovasc Res. 119, 2458–2468 (2023). PubMed PMC
Yousaf N., et al. , Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 19, e447–e458 (2018). PubMed
Chamoto K., Yaguchi T., Tajima M., Honjo T., Insights from a 30-year journey: Function, regulation and therapeutic modulation of PD1. Nat. Rev. Immunol. 2023, 1–14 (2023), 10.1038/s41577-023-00867-9. PubMed DOI
Boddupalli C. S., et al. , Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight 1, e88955 (2016). PubMed PMC
Swirski F. K., Nahrendorf M., Cardioimmunology: The immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018). PubMed
Hulsmans M., et al. , Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017). PubMed PMC
Schultheiss H. P., et al. , Dilated cardiomyopathy. Nat. Rev. Dis. Primers 5, 1–19 (2019). PubMed PMC
Merlo M., et al. , Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail 20, 228–239 (2018). PubMed
Lampejo T., Simon A., Durkin M., Bhatt N., Guttmann O., Acute myocarditis: Aetiology, diagnosis and management. Clin. Med. 21, 505–515 (2021). PubMed PMC
Del Buono M. G., et al. , Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr. Cardiol. Rep. 24, 1505–1515 (2022). PubMed PMC
Maisel A. S., et al. , Adrenergic control of circulating lymphocyte subpopulations effects of congestive heart failure, dynamic exercise, and terbutaline treatment. J. Clin. Invest. 85, 462–467 (1990). PubMed PMC
Tadokoro T., et al. , Acute lymphocytic myocarditis with anti-PD-1 antibody nivolumab. Circ. Heart Fail. 9, e003514 (2016). PubMed
Waldmann T. A., The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006). PubMed
Rusinkevich V., et al. , Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A. Acta Pharmacol. Sin. 40, 1168–1183 (2019), 10.1038/s41401-018-0197-1. PubMed DOI PMC