The protective role of GATA6+ pericardial macrophages in pericardial inflammation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39040070
PubMed Central
PMC11260870
DOI
10.1016/j.isci.2024.110244
PII: S2589-0042(24)01469-X
Knihovny.cz E-zdroje
- Klíčová slova
- Biochemistry, Biological sciences, Natural sciences, Physiology, cell biology,
- Publikační typ
- časopisecké články MeSH
Prior research has suggested that GATA6+ pericardial macrophages may traffic to the myocardium to prevent interstitial fibrosis after myocardial infarction (MI), while subsequent literature claims that they do not. We demonstrate that GATA6+ pericardial macrophages are critical for preventing IL-33 induced pericarditis and attenuate trafficking of inflammatory monocytes and granulocytes to the pericardial cavity after MI. However, absence of GATA6+ macrophages did not affect myocardial inflammation due to MI or coxsackievirus-B3 induced myocarditis, or late-stage cardiac fibrosis and cardiac function post MI. GATA6+ macrophages are significantly less transcriptionally active following stimulation in vitro compared to bone marrow-derived macrophages and do not induce upregulation of inflammatory markers in fibroblasts. This suggests that GATA6+ pericardial macrophages attenuate inflammation through their interactions with surrounding cells. We therefore conclude that GATA6+ pericardial macrophages are critical in modulating pericardial inflammation, but do not play a significant role in controlling myocardial inflammation or fibrosis.
Department of Pathology Johns Hopkins University School of Medicine Baltimore MD 21205 USA
Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Hoit B.D. Anatomy and Physiology of the Pericardium. Cardiol. Clin. 2017;35:481–490. doi: 10.1016/j.ccl.2017.07.002. PubMed DOI
Vogiatzidis K., Zarogiannis S.G., Aidonidis I., Solenov E.I., Molyvdas P.A., Gourgoulianis K.I., Hatzoglou C. Physiology of pericardial fluid production and drainage. Front. Physiol. 2015;6:62. doi: 10.3389/fphys.2015.00062. PubMed DOI PMC
Deniset J.F., Belke D., Lee W.Y., Jorch S.K., Deppermann C., Hassanabad A.F., Turnbull J.D., Teng G., Rozich I., Hudspeth K., et al. Gata6(+) Pericardial Cavity Macrophages Relocate to the Injured Heart and Prevent Cardiac Fibrosis. Immunity. 2019;51:131–140.e5. doi: 10.1016/j.immuni.2019.06.010. PubMed DOI PMC
Wang J., Kubes P. A Reservoir of Mature Cavity Macrophages that Can Rapidly Invade Visceral Organs to Affect Tissue Repair. Cell. 2016;165:668–678. doi: 10.1016/j.cell.2016.03.009. PubMed DOI
Trindade F., Vitorino R., Leite-Moreira A., Falcão-Pires I. Pericardial fluid: an underrated molecular library of heart conditions and a potential vehicle for cardiac therapy. Basic Res. Cardiol. 2019;114:10. doi: 10.1007/s00395-019-0716-3. PubMed DOI
Corda S., Mebazaa A., Gandolfini M.P., Fitting C., Marotte F., Peynet J., Charlemagne D., Cavaillon J.M., Payen D., Rappaport L., Samuel J.L. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy. Circ. Res. 1997;81:679–687. doi: 10.1161/01.res.81.5.679. PubMed DOI
Allen D.J., DiDio L.J., Zacharias A., Fentie I., McGrath A.J., Puig L.B., Pomerantzeff P.N., Zerbini E.J. Microscopic study of normal parietal pericardium and unimplanted Puig-Zerbini pericardial valvular heterografts. J. Thorac. Cardiovasc. Surg. 1984;87:845–855. PubMed
Talreja D.R., Edwards W.D., Danielson G.K., Schaff H.V., Tajik A.J., Tazelaar H.D., Breen J.F., Oh J.K. Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation. 2003;108:1852–1857. doi: 10.1161/01.CIR.0000087606.18453.FD. PubMed DOI
Ishihara T., Ferrans V.J., Jones M., Boyce S.W., Roberts W.C. Structure of bovine parietal pericardium and of unimplanted Ionescu-Shiley pericardial valvular bioprostheses. J. Thorac. Cardiovasc. Surg. 1981;81:747–757. PubMed
Mebazaa A., Wetzel R.C., Dodd-o J.M., Redmond E.M., Shah A.M., Maeda K., Maistre G., Lakatta E.G., Robotham J.L. Potential paracrine role of the pericardium in the regulation of cardiac function. Cardiovasc. Res. 1998;40:332–342. doi: 10.1016/s0008-6363(98)00134-5. PubMed DOI
DeCoux A., Lindsey M.L., Villarreal F., Garcia R.A., Schulz R. Myocardial matrix metalloproteinase-2: inside out and upside down. J. Mol. Cell. Cardiol. 2014;77:64–72. doi: 10.1016/j.yjmcc.2014.09.016. PubMed DOI PMC
Ren J., Samson W.K., Sowers J.R. Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J. Mol. Cell. Cardiol. 1999;31:2049–2061. doi: 10.1006/jmcc.1999.1036. PubMed DOI
Sibal L., Agarwal S.C., Home P.D., Boger R.H. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr. Cardiol. Rev. 2010;6:82–90. doi: 10.2174/157340310791162659. PubMed DOI PMC
Jiang Z.S., Srisakuldee W., Soulet F., Bouche G., Kardami E. Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovasc. Res. 2004;62:154–166. doi: 10.1016/j.cardiores.2004.01.009. PubMed DOI
Iwakura A., Fujita M., Hasegawa K., Sawamura T., Nohara R., Sasayama S., Komeda M. Pericardial fluid from patients with unstable angina induces vascular endothelial cell apoptosis. J. Am. Coll. Cardiol. 2000;35:1785–1790. doi: 10.1016/s0735-1097(00)00651-3. PubMed DOI
Kiris I., Kapan S., Narin C., Ozaydın M., Cure M.C., Sutcu R., Okutan H. Relationship between site of myocardial infarction, left ventricular function and cytokine levels in patients undergoing coronary artery surgery. Cardiovasc. J. Afr. 2016;27:299–306. doi: 10.5830/CVJA-2016-027. PubMed DOI PMC
Kameda K., Matsunaga T., Abe N., Fujiwara T., Hanada H., Fukui K., Fukuda I., Osanai T., Okumura K. Increased pericardial fluid level of matrix metalloproteinase-9 activity in patients with acute myocardial infarction: possible role in the development of cardiac rupture. Circ. J. 2006;70:673–678. doi: 10.1253/circj.70.673. PubMed DOI
Yoneda T., Fujita M., Kihara Y., Hasegawa K., Sawamura T., Tanaka T., Inanami M., Nohara R., Sasayama S. Pericardial fluid from patients with ischemic heart disease accelerates the growth of human vascular smooth muscle cells. Jpn. Circ. J. 2000;64:495–498. doi: 10.1253/jcj.64.495. PubMed DOI
Fujita M., Komeda M., Hasegawa K., Kihara Y., Nohara R., Sasayama S. Pericardial fluid as a new material for clinical heart research. Int. J. Cardiol. 2001;77:113–118. doi: 10.1016/s0167-5273(00)00462-9. PubMed DOI
Liu X., Bai C., Gong D., Yuan Y., Han L., Lu F., Han Q., Tang H., Huang S., Xu Z. Pleiotropic effects of transforming growth factor-β1 on pericardial interstitial cells. Implications for fibrosis and calcification in idiopathic constrictive pericarditis. J. Am. Coll. Cardiol. 2011;57:1634–1635. doi: 10.1016/j.jacc.2010.10.054. PubMed DOI
Simionescu D.T., Kefalides N.A. The biosynthesis of proteoglycans and interstitial collagens by bovine pericardial fibroblasts. Exp. Cell Res. 1991;195:171–176. doi: 10.1016/0014-4827(91)90513-t. PubMed DOI
Horkay F., Szokodi I., Merkely B., Solti F., Gellér L., Kiss P., Selmeci L., Horváth I., Kékesi V., Juhász-Nagy A., Tóth M. Potential pathophysiologic role of endothelin-1 in canine pericardial fluid. J. Cardiovasc. Pharmacol. 1998;31:S401–S402. doi: 10.1097/00005344-199800001-00115. PubMed DOI
Szokodi I., Horkay F., Merkely B., Solti F., Gellér L., Kiss P., Selmeci L., Kékesi V., Vuolteenaho O., Ruskoaho H., et al. Intrapericardial infusion of endothelin-1 induces ventricular arrhythmias in dogs. Cardiovasc. Res. 1998;38:356–364. doi: 10.1016/s0008-6363(98)00018-2. PubMed DOI
Kuwahara M., Kuwahara M. Pericardial mesothelial cells produce endothelin-1 and possess functional endothelin ETB receptors. Eur. J. Pharmacol. 1998;347:329–335. doi: 10.1016/s0014-2999(98)00110-1. PubMed DOI
Jin H., Liu K., Huang X., Huo H., Mou J., Qiao Z., He B., Zhou B. Genetic Lineage Tracing of Pericardial Cavity Macrophages in the Injured Heart. Circ. Res. 2022;130:1682–1697. doi: 10.1161/CIRCRESAHA.122.320567. PubMed DOI
Cailhier J.F., Sawatzky D.A., Kipari T., Houlberg K., Walbaum D., Watson S., Lang R.A., Clay S., Kluth D., Savill J., Hughes J. Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation. Am. J. Respir. Crit. Care Med. 2006;173:540–547. doi: 10.1164/rccm.200504-538OC. PubMed DOI PMC
Ghosn E.E.B., Cassado A.A., Govoni G.R., Fukuhara T., Yang Y., Monack D.M., Bortoluci K.R., Almeida S.R., Herzenberg L.A., Herzenberg L.A. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc. Natl. Acad. Sci. USA. 2010;107:2568–2573. doi: 10.1073/pnas.0915000107. PubMed DOI PMC
Gautier E.L., Ivanov S., Williams J.W., Huang S.C.C., Marcelin G., Fairfax K., Wang P.L., Francis J.S., Leone P., Wilson D.B., et al. Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J. Exp. Med. 2014;211:1525–1531. doi: 10.1084/jem.20140570. PubMed DOI PMC
Rosas M., Davies L.C., Giles P.J., Liao C.T., Kharfan B., Stone T.C., O'Donnell V.B., Fraser D.J., Jones S.A., Taylor P.R. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science. 2014;344:645–648. doi: 10.1126/science.1251414. PubMed DOI PMC
Epelman S., Lavine K.J., Beaudin A.E., Sojka D.K., Carrero J.A., Calderon B., Brija T., Gautier E.L., Ivanov S., Satpathy A.T., et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40:91–104. doi: 10.1016/j.immuni.2013.11.019. PubMed DOI PMC
Peet C., Ivetic A., Bromage D.I., Shah A.M. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc. Res. 2020;116:1101–1112. doi: 10.1093/cvr/cvz336. PubMed DOI PMC
Hou X., Chen G., Bracamonte-Baran W., Choi H.S., Diny N.L., Sung J., Hughes D., Won T., Wood M.K., Talor M.V., et al. The Cardiac Microenvironment Instructs Divergent Monocyte Fates and Functions in Myocarditis. Cell Rep. 2019;28:172–189.e7. doi: 10.1016/j.celrep.2019.06.007. PubMed DOI PMC
Bajpai G., Bredemeyer A., Li W., Zaitsev K., Koenig A.L., Lokshina I., Mohan J., Ivey B., Hsiao H.M., Weinheimer C., et al. Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circ. Res. 2019;124:263–278. doi: 10.1161/CIRCRESAHA.118.314028. PubMed DOI PMC
Buechler M.B., Kim K.W., Onufer E.J., Williams J.W., Little C.C., Dominguez C.X., Li Q., Sandoval W., Cooper J.E., Harris C.A., et al. A Stromal Niche Defined by Expression of the Transcription Factor WT1 Mediates Programming and Homeostasis of Cavity-Resident Macrophages. Immunity. 2019;51:119–130.e5. doi: 10.1016/j.immuni.2019.05.010. PubMed DOI PMC
Choi H.S., Won T., Hou X., Chen G., Bracamonte-Baran W., Talor M.V., Jurčová I., Szárszoi O., Čurnova L., Stříž I., et al. Innate Lymphoid Cells Play a Pathogenic Role in Pericarditis. Cell Rep. 2020;30:2989–3003.e6. doi: 10.1016/j.celrep.2020.02.040. PubMed DOI PMC
Abston E.D., Barin J.G., Cihakova D., Bucek A., Coronado M.J., Brandt J.E., Bedja D., Kim J.B., Georgakopoulos D., Gabrielson K.L., et al. IL-33 independently induces eosinophilic pericarditis and cardiac dilation: ST2 improves cardiac function. Circ. Heart Fail. 2012;5:366–375. doi: 10.1161/CIRCHEARTFAILURE.111.963769. PubMed DOI PMC
Sutton M.G., Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981–2988. doi: 10.1161/01.cir.101.25.2981. PubMed DOI
Gautier E.L., Ivanov S., Lesnik P., Randolph G.J. Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood. 2013;122:2714–2722. doi: 10.1182/blood-2013-01-478206. PubMed DOI PMC
Hynes R.O. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687. doi: 10.1016/s0092-8674(02)00971-6. PubMed DOI
Kubota A., Frangogiannis N.G. Macrophages in myocardial infarction. Am. J. Physiol. Cell Physiol. 2022;323:C1304–C1324. doi: 10.1152/ajpcell.00230.2022. PubMed DOI PMC
Bracamonte-Baran W., Čiháková D. Cardiac Autoimmunity: Myocarditis. Adv. Exp. Med. Biol. 2017;1003:187–221. doi: 10.1007/978-3-319-57613-8_10. PubMed DOI PMC
Xu B., Harb S.C., Cremer P.C. New Insights into Pericarditis: Mechanisms of Injury and Therapeutic Targets. Curr. Cardiol. Rep. 2017;19:60. doi: 10.1007/s11886-017-0866-6. PubMed DOI
Ooi A., Douds A.C., Kumar E.B., Nashef S.A.M. Boxer's pericardium. Eur. J. Cardio. Thorac. Surg. 2003;24:1043–1045. doi: 10.1016/s1010-7940(03)00579-7. PubMed DOI
Takahashi M., Kondo T., Yamasaki G., Sugimoto M., Asano M., Ueno Y., Nagasaki Y. An autopsy case report of aortic dissection complicated with histiolymphocytic pericarditis and aortic inflammation after mRNA COVID-19 vaccination. Leg. Med. 2022;59 doi: 10.1016/j.legalmed.2022.102154. PubMed DOI PMC
Luo P., Qiu B. The role of immune cells in pulmonary hypertension: Focusing on macrophages. Hum. Immunol. 2022;83:153–163. doi: 10.1016/j.humimm.2021.11.006. PubMed DOI
Jimenez J., Lavine K.J. The Dynamic Role of Cardiac Macrophages in Aging and Disease. Curr. Cardiol. Rep. 2022;24:925–933. doi: 10.1007/s11886-022-01714-4. PubMed DOI
Zhu Y., Knolhoff B.L., Meyer M.A., Nywening T.M., West B.L., Luo J., Wang-Gillam A., Goedegebuure S.P., Linehan D.C., DeNardo D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–5069. doi: 10.1158/0008-5472.CAN-13-3723. PubMed DOI PMC
Peranzoni E., Lemoine J., Vimeux L., Feuillet V., Barrin S., Kantari-Mimoun C., Bercovici N., Guérin M., Biton J., Ouakrim H., et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl. Acad. Sci. USA. 2018;115:E4041–E4050. doi: 10.1073/pnas.1720948115. PubMed DOI PMC
Xu L., Yang Y., Wen Y., Jeong J.M., Emontzpohl C., Atkins C.L., Sun Z., Poulsen K.L., Hall D.R., Steve Bynon J., et al. Hepatic recruitment of eosinophils and their protective function during acute liver injury. J. Hepatol. 2022;77:344–352. doi: 10.1016/j.jhep.2022.02.024. PubMed DOI PMC
da Silva Marques P., da Fonseca-Martins A.M., Carneiro M.P.D., Amorim N.R.T., de Pão C.R.R., Canetti C., Diaz B.L., de Matos Guedes H.L., Bandeira-Melo C. Eosinophils increase macrophage ability to control intracellular Leishmania amazonensis infection via PGD(2) paracrine activity in vitro. Cell. Immunol. 2021;363 doi: 10.1016/j.cellimm.2021.104316. PubMed DOI
Kim J., Bae J.S. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediat. Inflamm. 2016;2016 doi: 10.1155/2016/6058147. PubMed DOI PMC
Frangogiannis N.G., Dewald O., Xia Y., Ren G., Haudek S., Leucker T., Kraemer D., Taffet G., Rollins B.J., Entman M.L. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115:584–592. doi: 10.1161/CIRCULATIONAHA.106.646091. PubMed DOI
Wong N.R., Mohan J., Kopecky B.J., Guo S., Du L., Leid J., Feng G., Lokshina I., Dmytrenko O., Luehmann H., et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity. 2021;54:2072–2088.e7. doi: 10.1016/j.immuni.2021.07.003. PubMed DOI PMC
Jin H., Liu K., Tang J., Huang X., Wang H., Zhang Q., Zhu H., Li Y., Pu W., Zhao H., et al. Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nat. Commun. 2021;12:2863. doi: 10.1038/s41467-021-23197-7. PubMed DOI PMC
Benard A., Podolska M.J., Czubayko F., Kutschick I., Klosch B., Jacobsen A., Naschberger E., Brunner M., Krautz C., Trufa D.I., et al. Pleural Resident Macrophages and Pleural IRA B Cells Promote Efficient Immunity Against Pneumonia by Inducing Early Pleural Space Inflammation. Front. Immunol. 2022;13 doi: 10.3389/fimmu.2022.821480. PubMed DOI PMC
Leendertse M., Willems R.J.L., Giebelen I.A.J., Roelofs J.J.T.H., van Rooijen N., Bonten M.J.M., van der Poll T. Peritoneal macrophages are important for the early containment of Enterococcus faecium peritonitis in mice. Innate Immun. 2009;15:3–12. doi: 10.1177/1753425908100238. PubMed DOI
Zindel J., Peiseler M., Hossain M., Deppermann C., Lee W.Y., Haenni B., Zuber B., Deniset J.F., Surewaard B.G.J., Candinas D., Kubes P. Primordial GATA6 macrophages function as extravascular platelets in sterile injury. Science. 2021;371 doi: 10.1126/science.abe0595. PubMed DOI
Capobianco A., Cottone L., Monno A., Manfredi A.A., Rovere-Querini P. The peritoneum: healing, immunity, and diseases. J. Pathol. 2017;243:137–147. doi: 10.1002/path.4942. PubMed DOI
Fairweather D., Frisancho-Kiss S., Njoku D.B., Nyland J.F., Kaya Z., Yusung S.A., Davis S.E., Frisancho J.A., Barrett M.A., Rose N.R. Complement receptor 1 and 2 deficiency increases coxsackievirus B3-induced myocarditis, dilated cardiomyopathy, and heart failure by increasing macrophages, IL-1beta, and immune complex deposition in the heart. J. Immunol. 2006;176:3516–3524. doi: 10.4049/jimmunol.176.6.3516. PubMed DOI
Bao J., Sun T., Yue Y., Xiong S. Macrophage NLRP3 inflammasome activated by CVB3 capsid proteins contributes to the development of viral myocarditis. Mol. Immunol. 2019;114:41–48. doi: 10.1016/j.molimm.2019.07.012. PubMed DOI
Miteva K., Pappritz K., El-Shafeey M., Dong F., Ringe J., Tschöpe C., Van Linthout S. Mesenchymal Stromal Cells Modulate Monocytes Trafficking in Coxsackievirus B3-Induced Myocarditis. Stem Cells Transl. Med. 2017;6:1249–1261. doi: 10.1002/sctm.16-0353. PubMed DOI PMC
Agrawal A., Zabad M.N., Dayanand S., Lygouris G., Witzke C. Pericardium: The Forgotten Space During Acute Myocardial Infarction. J. Emerg. Med. 2018;55:e85–e91. doi: 10.1016/j.jemermed.2018.07.013. PubMed DOI
Limkar A.R., Mai E., Sek A.C., Percopo C.M., Rosenberg H.F. Frontline Science: Cytokine-mediated developmental phenotype of mouse eosinophils: IL-5-associated expression of the Ly6G/Gr1 surface Ag. J. Leukoc. Biol. 2020;107:367–377. doi: 10.1002/JLB.1HI1019-116RR. PubMed DOI PMC
Percopo C.M., Brenner T.A., Ma M., Kraemer L.S., Hakeem R.M.A., Lee J.J., Rosenberg H.F. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J. Leukoc. Biol. 2017;101:321–328. doi: 10.1189/jlb.3A0416-166R. PubMed DOI PMC
Ryu S., Shin J.W., Kwon S., Lee J., Kim Y.C., Bae Y.S., Bae Y.S., Kim D.K., Kim Y.S., Yang S.H., Kim H.Y. Siglec-F-expressing neutrophils are essential for creating a profibrotic microenvironment in renal fibrosis. J. Clin. Invest. 2022;132 doi: 10.1172/JCI156876. PubMed DOI PMC
Vafadarnejad E., Rizzo G., Krampert L., Arampatzi P., Arias-Loza A.P., Nazzal Y., Rizakou A., Knochenhauer T., Bandi S.R., Nugroho V.A., et al. Dynamics of Cardiac Neutrophil Diversity in Murine Myocardial Infarction. Circ. Res. 2020;127:e232–e249. doi: 10.1161/CIRCRESAHA.120.317200. PubMed DOI
Horckmans M., Ring L., Duchene J., Santovito D., Schloss M.J., Drechsler M., Weber C., Soehnlein O., Steffens S. Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. Eur. Heart J. 2017;38:187–197. doi: 10.1093/eurheartj/ehw002. PubMed DOI
Liu J., Yang C., Liu T., Deng Z., Fang W., Zhang X., Li J., Huang Q., Liu C., Wang Y., et al. Eosinophils improve cardiac function after myocardial infarction. Nat. Commun. 2020;11:6396. doi: 10.1038/s41467-020-19297-5. PubMed DOI PMC
Calcagno D.M., Zhang C., Toomu A., Huang K., Ninh V.K., Miyamoto S., Aguirre A.D., Fu Z., Heller Brown J., King K.R. SiglecF(HI) Marks Late-Stage Neutrophils of the Infarcted Heart: A Single-Cell Transcriptomic Analysis of Neutrophil Diversification. J. Am. Heart Assoc. 2021;10 doi: 10.1161/JAHA.120.019019. PubMed DOI PMC
Horckmans M., Bianchini M., Santovito D., Megens R.T.A., Springael J.Y., Negri I., Vacca M., Di Eusanio M., Moschetta A., Weber C., et al. Pericardial Adipose Tissue Regulates Granulopoiesis, Fibrosis, and Cardiac Function After Myocardial Infarction. Circulation. 2018;137:948–960. doi: 10.1161/CIRCULATIONAHA.117.028833. PubMed DOI
Nahrendorf M., Swirski F.K., Aikawa E., Stangenberg L., Wurdinger T., Figueiredo J.L., Libby P., Weissleder R., Pittet M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007;204:3037–3047. doi: 10.1084/jem.20070885. PubMed DOI PMC
Rizzo G., Gropper J., Piollet M., Vafadarnejad E., Rizakou A., Bandi S.R., Arampatzi P., Krammer T., DiFabion N., Dietrich O., et al. Dynamics of monocyte-derived macrophage diversity in experimental myocardial infarction. Cardiovasc. Res. 2023;119:772–785. doi: 10.1093/cvr/cvac113. PubMed DOI PMC
Heidt T., Courties G., Dutta P., Sager H.B., Sebas M., Iwamoto Y., Sun Y., Da Silva N., Panizzi P., van der Laan A.M., et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res. 2014;115:284–295. doi: 10.1161/CIRCRESAHA.115.303567. PubMed DOI PMC
Dao L., Blaue C., Franz C.M. Integrin α2β1 as a negative regulator of the laminin receptors α6β1 and α6β4. Micron. 2021;148 doi: 10.1016/j.micron.2021.103106. PubMed DOI
Wang J., Xie L., Chen X., Lyu P., Zhang Q. Changes in Laminin in Acute Heart Failure. Int. Heart J. 2022;63:454–458. doi: 10.1536/ihj.21-769. PubMed DOI
Horton M.A. The alpha v beta 3 integrin "vitronectin receptor". Int. J. Biochem. Cell Biol. 1997;29:721–725. doi: 10.1016/s1357-2725(96)00155-0. PubMed DOI
Bellis S.L. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32:4205–4210. doi: 10.1016/j.biomaterials.2011.02.029. PubMed DOI PMC
Siebert H., Sachse A., Kuziel W.A., Maeda N., Brück W. The chemokine receptor CCR2 is involved in macrophage recruitment to the injured peripheral nervous system. J. Neuroimmunol. 2000;110:177–185. doi: 10.1016/s0165-5728(00)00343-x. PubMed DOI
Dewald O., Zymek P., Winkelmann K., Koerting A., Ren G., Abou-Khamis T., Michael L.H., Rollins B.J., Entman M.L., Frangogiannis N.G. CCL2/Monocyte Chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 2005;96:881–889. doi: 10.1161/01.RES.0000163017.13772.3a. PubMed DOI
Kalayci M., Gul E. Eotaxin-1 Levels in Patients with Myocardial Infarction. Clin. Lab. 2022;68 doi: 10.7754/Clin.Lab.2021.210806. PubMed DOI
Coffelt S.B., Kersten K., Doornebal C.W., Weiden J., Vrijland K., Hau C.S., Verstegen N.J.M., Ciampricotti M., Hawinkels L.J.A.C., Jonkers J., de Visser K.E. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–348. doi: 10.1038/nature14282. PubMed DOI PMC
Weber A., Wasiliew P., Kracht M. Interleukin-1beta (IL-1beta) processing pathway. Sci. Signal. 2010;3 doi: 10.1126/scisignal.3105cm2. PubMed DOI
Gyori D., Lim E.L., Grant F.M., Spensberger D., Roychoudhuri R., Shuttleworth S.J., Okkenhaug K., Stephens L.R., Hawkins P.T. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight. 2018;3 doi: 10.1172/jci.insight.120631. PubMed DOI PMC
Shinde A.V., Humeres C., Frangogiannis N.G. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta, Mol. Basis Dis. 2017;1863:298–309. doi: 10.1016/j.bbadis.2016.11.006. PubMed DOI PMC
Hinz B. Myofibroblasts. Exp. Eye Res. 2016;142:56–70. doi: 10.1016/j.exer.2015.07.009. PubMed DOI
Gibb A.A., Lazaropoulos M.P., Elrod J.W. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ. Res. 2020;127:427–447. doi: 10.1161/CIRCRESAHA.120.316958. PubMed DOI PMC
Buechler M.B., Fu W., Turley S.J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity. 2021;54:903–915. doi: 10.1016/j.immuni.2021.04.021. PubMed DOI
Clausen B.E., Burkhardt C., Reith W., Renkawitz R., Förster I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 1999;8:265–277. doi: 10.1023/a:1008942828960. PubMed DOI
Sodhi C.P., Li J., Duncan S.A. Generation of mice harbouring a conditional loss-of-function allele of Gata6. BMC Dev. Biol. 2006;6:19. doi: 10.1186/1471-213X-6-19. PubMed DOI PMC