Inert Liquid Exfoliation and Langmuir-Type Thin Film Deposition of Semimetallic Metal Diborides

. 2024 Oct 22 ; 18 (42) : 28596-28608. [epub] 20241009

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39382209

Graphite is one of only a few layered materials that can be exfoliated into nanosheets with semimetallic properties, which limits the applications of nanosheet-based electrodes to material combinations compatible with the work function of graphene. It is therefore important to identify additional metallic or semimetallic two-dimensional (2D) nanomaterials that can be processed in solution for scalable fabrication of printed electronic devices. Metal diborides represent a family of layered non-van der Waals crystals with semimetallic properties for all nanosheet thicknesses. While previous reports show that the exfoliated nanomaterial is prone to oxidation, we demonstrate a readily accessible inert exfoliation process to produce quasi-2D nanoplatelets with intrinsic material properties. For this purpose, we demonstrate the exfoliation of three representative metal diborides (MgB2, CrB2, and ZrB2) under inert conditions. Nanomaterial is characterized using a combination of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, IR, and UV-vis measurements, with only minimal oxidation indicated postprocessing. By depositing the pristine metal diboride nanoplatelets as thin films using a Langmuir-type deposition technique, the ohmic behavior of the networks is validated. Furthermore, the material decomposition is studied by using a combination of electrical and optical measurements after controlled exposure to ambient conditions. Finally, we report an efficient, low-cost approach for sample encapsulation to protect the nanomaterials from oxidation. This is used to demonstrate low-gauge factor strain sensors, confirming metal diboride nanosheets as a suitable alternative to graphene for electrode materials in printed electronics.

Zobrazit více v PubMed

Kelly A. G.; Hallam T.; Backes C.; Harvey A.; Esmaeily A. S.; Godwin I.; Coelho J.; Nicolosi V.; Lauth J.; Kulkarni A.; et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69–73. 10.1126/science.aal4062. PubMed DOI

Chen X.; Wang X.; Pang Y.; Bao G.; Jiang J.; Yang P.; Chen Y.; Rao T.; Liao W. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. Small Methods 2023, 7, 220115610.1002/smtd.202201156. PubMed DOI

Song O.; Rhee D.; Kim J.; Jeon Y.; Mazánek V.; Söll A.; Kwon Y. A.; Cho J. H.; Kim Y.-H.; Sofer Z.; Kang J. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. npj 2D Mater. Appl. 2022, 6, 64.10.1038/s41699-022-00337-1. DOI

Conti S.; Pimpolari L.; Calabrese G.; Worsley R.; Majee S.; Polyushkin D. K.; Paur M.; Pace S.; Keum D. H.; Fabbri F.; et al. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 2020, 11, 356610.1038/s41467-020-17297-z. PubMed DOI PMC

Lee K.; Szydłowska B. M.; Hartwig O.; Synnatschke K.; Tywoniuk B.; Hartman T.; Tomašević-Ilić T.; Gabbett C. P.; Coleman J. N.; Sofer Z.; et al. Highly conductive and long-term stable films from liquid-phase exfoliated platinum diselenide. J. Mater. Chem. C 2023, 11, 593–599. 10.1039/D2TC03889G. DOI

Dai J.; Ogbeide O.; Macadam N.; Sun Q.; Yu W.; Li Y.; Su B.-L.; Hasan T.; Huang X.; Huang W. Printed gas sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. 10.1039/C9CS00459A. PubMed DOI

Sui X.; Rangnekar S. V.; Lee J.; Liu S. E.; Downing J. R.; Chaney L. E.; Yan X.; Jang H.-J.; Pu H.; Shi X.; et al. Fully Inkjet-Printed, 2D Materials-Based Field-Effect Transistor for Water Sensing. Adv. Mater. Technol. 2023, 8, 230128810.1002/admt.202301288. DOI

Zhang R.; Jiang J.; Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale 2023, 15, 3079–3105. 10.1039/D2NR05447G. PubMed DOI

Synnatschke K.; van Dinter J.; Müller A.; Tiede D.; Spillecke L.; Shao S.; Kelly D.; Konecny J.; Konkena B.; McCrystall M.; et al. Exfoliablity, magnetism, energy storage and stability of metal thiophosphate nanosheets made in liquid medium. 2D Mater. 2023, 10, 02400310.1088/2053-1583/acba2c. DOI

Xie F.; Xu C.; Song Y.; Liang Q.; Ji J.; Wang S. 2D-2D heterostructure of ionic liquid-exfoliated MoS2/MXene as lithium polysulfide barrier for Li-S batteries. J. Colloid Interface Sci. 2023, 636, 528–536. 10.1016/j.jcis.2023.01.031. PubMed DOI

Islam M. R.; Afroj S.; Karim N. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors. ACS Nano 2023, 17, 18481–18493. 10.1021/acsnano.3c06181. PubMed DOI PMC

Panagiotopoulos A.; Nagaraju G.; Tagliaferri S.; Grotta C.; Sherrell P. C.; Sokolikova M.; Cheng G.; Iacoviello F.; Sharda K.; Mattevi C. 3D printed inks of two-dimensional semimetallic MoS2/TiS2 nanosheets for conductive-additive-free symmetric supercapacitors. J. Mater. Chem. A 2023, 11, 16190–16200. 10.1039/D3TA02508J. DOI

Shanmugam V.; Mensah R. A.; Babu K.; Gawusu S.; Chanda A.; Tu Y.; Neisiany R. E.; Försth M.; Sas G.; Das O. A Review of the Synthesis, Properties, and Applications of 2D Materials. Part. Part. Syst. Charact. 2022, 39, 220003110.1002/ppsc.202200031. DOI

Hernandez Y.; Nicolosi V.; Lotya M.; Blighe F. M.; Sun Z.; De S.; McGovern I. T.; Holland B.; Byrne M.; Gun’Ko Y. K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. 10.1038/nnano.2008.215. PubMed DOI

Khazaei M.; Ranjbar A.; Esfarjani K.; Bogdanovski D.; Dronskowski R.; Yunoki S. Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 2018, 20, 8579–8592. 10.1039/C7CP08645H. PubMed DOI

Er E.; Hou H.-L.; Criado A.; Langer J.; Möller M.; Erk N.; Liz-Marzán L. M.; Prato M. High-Yield Preparation of Exfoliated 1T-MoS2 with SERS Activity. Chem. Mater. 2019, 31, 5725–5734. 10.1021/acs.chemmater.9b01698. DOI

Knirsch K. C.; Berner N. C.; Nerl H. C.; Cucinotta C. S.; Gholamvand Z.; McEvoy N.; Wang Z.; Abramovic I.; Vecera P.; Halik M.; et al. Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano 2015, 9, 6018–6030. 10.1021/acsnano.5b00965. PubMed DOI

Pastoriza-Santos I.; Liz-Marzán L. M. Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem. 2008, 18, 1724–1737. 10.1039/b716538b. DOI

Kelly A. G.; O’Suilleabhain D.; Gabbett C.; Coleman J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 2022, 7, 217–234. 10.1038/s41578-021-00386-w. DOI

van Hazendonk L. S.; Pinto A. M.; Arapov K.; Pillai N.; Beurskens M. R. C.; Teunissen J.-P.; Sneck A.; Smolander M.; Rentrop C. H. A.; Bouten P. C. P.; Friedrich H. Printed Stretchable Graphene Conductors for Wearable Technology. Chem. Mater. 2022, 34, 8031–8042. 10.1021/acs.chemmater.2c02007. PubMed DOI PMC

Gang Z.; Miao Z.; Liu Y.; Huang J.; Chen F.; Fu Q. High thermal conductivity and increased thickness graphene nanosheet films prepared through metal ion-free route. Ceram. Int. 2022, 48, 3711–3719. 10.1016/j.ceramint.2021.10.153. DOI

Zhou X.; Leng T.; Pan K.; Liu Y.; Zhang Z.; Li J.; Novoselov K. S.; Hu Z. A sustainable approach towards printed graphene ink for wireless RFID sensing applications. Carbon 2024, 218, 11869310.1016/j.carbon.2023.118693. DOI

He P.; Zhang Y.; Wang Z.; Min P.; Deng Z.; Li L.; Ye L.; Yu Z.-Z.; Zhang H.-B. An energy-saving structural optimization strategy for high-performance multifunctional graphene films. Carbon 2024, 222, 11893210.1016/j.carbon.2024.118932. DOI

Yildirim T. The surprising superconductor. Mater. Today 2002, 5, 40–44. 10.1016/S1369-7021(02)05424-X. DOI

Yousaf A.; Gilliam M. S.; Chang S. L. Y.; Augustin M.; Guo Y.; Tahir F.; Wang M.; Schwindt A.; Chu X. S.; Li D. O.; et al. Exfoliation of Quasi-Two-Dimensional Nanosheets of Metal Diborides. J. Phys. Chem. C 2021, 125, 6787–6799. 10.1021/acs.jpcc.1c00394. DOI

Jin K.-H.; Huang H.; Mei J.-W.; Liu Z.; Lim L.-K.; Liu F. Topological superconducting phase in high-Tc superconductor MgB2 with Dirac–nodal-line fermions. npj Comput. Mater. 2019, 5, 57.10.1038/s41524-019-0191-2. DOI

Mazin I. I.; Antropov V. P. Electronic structure, electron–phonon coupling, and multiband effects in MgB2. Phys. C 2003, 385, 49–65. 10.1016/S0921-4534(02)02299-2. DOI

Awana V. P. S.; Vajpayee A.; Mudgel M.; Ganesan V.; Awasthi A. M.; Bhalla G. L.; Kishan H. Physical property characterization of bulk MgB2 superconductor. Eur. Phys. J. B 2008, 62, 281–294. 10.1140/epjb/e2008-00174-1. DOI

Bud’ko S. L.; Canfield P. C. Superconductivity of magnesium diboride. Phys. C 2015, 514, 142–151. 10.1016/j.physc.2015.02.024. DOI

Nagamatsu J.; Nakagawa N.; Muranaka T.; Zenitani Y.; Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. 10.1038/35065039. PubMed DOI

Castro Neto A. H.; Guinea F.; Peres N. M. R.; Novoselov K. S.; Geim A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. 10.1103/RevModPhys.81.109. DOI

Backes C.; Campi D.; Szydlowska B. M.; Synnatschke K.; Ojala E.; Rashvand F.; Harvey A.; Griffin A.; Sofer Z.; Marzari N.; et al. Equipartition of Energy Defines the Size–Thickness Relationship in Liquid-Exfoliated Nanosheets. ACS Nano 2019, 13, 7050–7061. 10.1021/acsnano.9b02234. PubMed DOI

Gilliam M. S.; Yousaf A.; Guo Y.; Li D. O.; Momenah A.; Wang Q. H.; Green A. A. Evaluating the Exfoliation Efficiency of Quasi-2D Metal Diboride Nanosheets Using Hansen Solubility Parameters. Langmuir 2021, 37, 1194–1205. 10.1021/acs.langmuir.0c03138. PubMed DOI

Patidar R.; Gunda H.; Varma A. K.; Gawas R.; Das S. K.; Jasuja K. Co-solvent exfoliation of layered titanium diboride into few-layer-thick nanosheets. Ceram. Int. 2020, 46, 28324–28331. 10.1016/j.ceramint.2020.07.336. DOI

Das S. K.; Jasuja K. Chemical Exfoliation of Layered Magnesium Diboride To Yield Functionalized Nanosheets and Nanoaccordions for Potential Flame Retardant Applications. ACS Appl. Nano Mater. 2018, 1, 1612–1622. 10.1021/acsanm.8b00101. DOI

Das S. K.; Bedar A.; Kannan A.; Jasuja K. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci. Rep. 2015, 5, 1052210.1038/srep10522. PubMed DOI PMC

Gunda H.; Das S. K.; Jasuja K. Simple, Green, and High-Yield Production of Boron-Based Nanostructures with Diverse Morphologies by Dissolution and Recrystallization of Layered Magnesium Diboride Crystals in Water. ChemPhysChem 2018, 19, 880–891. 10.1002/cphc.201701033. PubMed DOI

Jiang Y.; Ka D.; Huynh A. H.; Baek J.; Ning R.; Yu S.-J.; Zheng X. Exfoliated Magnesium Diboride (MgB2) Nanosheets as Solid Fuels. Nano Lett. 2023, 23, 7968–7974. 10.1021/acs.nanolett.3c01910. PubMed DOI

Padhi S. K.; Liu X.; Valsania M. C.; Andreo L.; Agostino A.; Alessio A.; Pastero L.; Giordana A.; Wu Z.; Cravotto G.; Truccato M. Structure and physicochemical properties of MgB2 nanosheets obtained via sonochemical liquid phase exfoliation. Nano-Struct. Nano-Objects 2023, 35, 10101610.1016/j.nanoso.2023.101016. DOI

Nishino H.; Fujita T.; Yamamoto A.; Fujimori T.; Fujino A.; Ito S.-i.; Nakamura J.; Hosono H.; Kondo T. Formation Mechanism of Boron-Based Nanosheet through the Reaction of MgB2 with Water. J. Phys. Chem. C 2017, 121, 10587–10593. 10.1021/acs.jpcc.7b02348. DOI

James A. L.; Jasuja K. Chelation assisted exfoliation of layered borides towards synthesizing boron based nanosheets. RSC Adv. 2017, 7, 1905–1914. 10.1039/C6RA26658D. DOI

Ratnam D.; Das S. K.; Jasuja K. Ionic Liquid Assisted Exfoliation of Layered Magnesium Diboride. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 225, 01211110.1088/1757-899X/225/1/012111. DOI

Muñiz Diaz R.; Cardoso-Avila P. E.; Pérez Tavares J. A.; Patakfalvi R.; Villa Cruz V.; Pérez Ladrón de Guevara H.; Gutiérrez Coronado O.; Arteaga Garibay R. I.; Saavedra Arroyo Q. E.; Marañón-Ruiz V. F.; Castañeda Contreras J. Two-Step Triethylamine-Based Synthesis of MgO Nanoparticles and Their Antibacterial Effect against Pathogenic Bacteria. Nanomaterials 2021, 11, 410.10.3390/nano11020410. PubMed DOI PMC

Ridings C.; Warr G. G.; Andersson G. G. Composition of the outermost layer and concentration depth profiles of ammonium nitrate ionic liquid surfaces. Phys. Chem. Chem. Phys. 2012, 14, 16088–16095. 10.1039/c2cp43035e. PubMed DOI

Nemes-Incze P.; Osváth Z.; Kamarás K.; Biró L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442. 10.1016/j.carbon.2008.06.022. DOI

Nagashio K.; Yamashita T.; Nishimura T.; Kita K.; Toriumi A. Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 2011, 110, 02451310.1063/1.3611394. DOI

Szendrei K.; Ganter P.; Sànchez-Sobrado O.; Eger R.; Kuhn A.; Lotsch B. V. Touchless Optical Finger Motion Tracking Based on 2D Nanosheets with Giant Moisture Responsiveness. Adv. Mater. 2015, 27, 6341–6348. 10.1002/adma.201503463. PubMed DOI

Backes C.; Smith R. J.; McEvoy N.; Berner N. C.; McCloskey D.; Nerl H. C.; O’Neill A.; King P. J.; Higgins T.; Hanlon D.; et al. Edge and Confinement Effects Allow in situ Measurement of Size and Thickness of Liquid-Exfoliated Nanosheets. Nat. Commun. 2014, 5, 457610.1038/ncomms5576. PubMed DOI

Synnatschke K.; Shao S.; van Dinter J.; Hofstetter Y. J.; Kelly D. J.; Grieger S.; Haigh S. J.; Vaynzof Y.; Bensch W.; Backes C. Liquid exfoliation of Ni2P2S6: Structural characterisation, size-dependent properties and degradation. Chem. Mater. 2019, 31, 9127–9139. 10.1021/acs.chemmater.9b03468. DOI

Gibaja C.; Rodriguez-San-Miguel D.; Ares P.; Gómez-Herrero J.; Varela M.; Gillen R.; Maultzsch J.; Hauke F.; Hirsch A.; Abellán G.; Zamora F. Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew. Chem., Int. Ed. 2016, 55, 14345–14349. 10.1002/anie.201605298. PubMed DOI PMC

Gosch J.; Synnatschke K.; Stock N.; Backes C. Comparative study of sonication-assisted liquid phase exfoliation of six layered coordination polymers. Chem. Commun. 2022, 59, 55–58. 10.1039/D2CC03366F. PubMed DOI

Synnatschke K.; Cieslik P. A.; Harvey A.; Castellanos-Gomez A.; Tian T.; Shih C.-J.; Chernikov A.; Santos E. J. G.; Coleman J. N.; Backes C. Length and thickness dependent optical response of liquid-exfoliated transition metal dichalcogenides. Chem. Mater. 2019, 31, 10049–10062. 10.1021/acs.chemmater.9b02905. DOI

Carey T.; Cassidy O.; Synnatschke K.; Caffrey E.; Garcia J.; Liu S.; Kaur H.; Kelly A. G.; Munuera J.; Gabbett C.; et al. High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides. ACS Nano 2023, 17, 2912–2922. 10.1021/acsnano.2c11319. PubMed DOI PMC

Synnatschke K.Liquid Phase Exfoliation and Size Dependent Properties of van der Waals Crystals; Heidelberg University, 2021.

Paton K. R.; Varrla E.; Backes C.; Smith R. J.; Khan U.; O’Neill A.; Boland C.; Lotya M.; Istrate O. M.; King P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. 10.1038/nmat3944. PubMed DOI

Lange R. Z.; Synnatschke K.; Qi H.; Huber N.; Hofer G.; Liang B.; Huck C.; Pucci A.; Kaiser U.; Backes C.; Schlüter A. D. Enriching and Quantifying Porous Single Layer 2D Polymers by Exfoliation of Chemically Modified van der Waals Crystals. Angew. Chem., Int. Ed. 2020, 59, 5683–5695. 10.1002/anie.201912705. PubMed DOI PMC

Harvey A.; Backes C.; Boland J. B.; He X. Y.; Griffin A.; Szydlowska B.; Gabbett C.; Donegan J. F.; Coleman J. N. Non-resonant light scattering in dispersions of 2D nanosheets. Nat. Commun. 2018, 9 (1), 4553.10.1038/s41467-018-07005-3. PubMed DOI PMC

Zhang J. Z.; Kong N.; Uzun S.; Levitt A.; Seyedin S.; Lynch P. A.; Qin S.; Han M. K.; Yang W. R.; Liu J. Q.; et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Adv. Mater. 2020, 32, 200109310.1002/adma.202001093. PubMed DOI

Kelly A. G.; O’Reilly J.; O’Reilly J.; Gabbett C.; Szydłowska B.; O’Suilleabhain D.; O’Suilleabhain D.; Khan U.; Khan U.; Maughan J.; Maughan J.; Carey T.; Carey T.; Sheil S.; Sheil S.; Stamenov P.; Stamenov P.; Coleman J. N. Highly Conductive Networks of Silver Nanosheets. Small 2022, 18, 210599610.1002/smll.202105996. PubMed DOI

Synnatschke K.; Moses Badlyan N.; Wrzesińska A.; Lozano Onrubia G.; Hansen A. L.; Wolff S.; Tornatzky H.; Bensch W.; Vaynzof Y.; Maultzsch J.; Backes C. Sonication-assisted liquid phase exfoliation of two-dimensional CrTe3 under inert conditions. Ultrason. Sonochem. 2023, 98, 10652810.1016/j.ultsonch.2023.106528. PubMed DOI PMC

Hanlon D.; Backes C.; Doherty E.; Cucinotta C. S.; Berner N. C.; Boland C.; Lee K.; Lynch P.; Gholamvand Z.; Harvey A.; et al. Liquid Exfoliation of Solvent-Stabilised Few-Layer Black Phosphorus for Applications Beyond Electronics. Nat. Commun. 2015, 6, 856310.1038/ncomms9563. PubMed DOI PMC

Abellán G.; Lloret V.; Mundloch U.; Marcia M.; Neiss C.; Görling A.; Varela M.; Hauke F.; Hirsch A. Noncovalent Functionalization of Black Phosphorus. Angew. Chem., Int. Ed. 2016, 55, 14557–14562. 10.1002/anie.201604784. PubMed DOI

Arora H.; Fekri Z.; Vekariya Y. N.; Chava P.; Watanabe K.; Taniguchi T.; Helm M.; Erbe A. Fully Encapsulated and Stable Black Phosphorus Field-Effect Transistors. Adv. Mater. Technol. 2023, 8, 220054610.1002/admt.202200546. DOI

Huang W.; Zhang Y.; Song M.; Wang B.; Hou H.; Hu X.; Chen X.; Zhai T. Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chin. Chem. Lett. 2022, 33, 2281–2290. 10.1016/j.cclet.2021.08.086. DOI

Pinilla S.; Coelho J.; Li K.; Liu J.; Nicolosi V. Two-dimensional material inks. Nat. Rev. Mater. 2022, 7, 717–735. 10.1038/s41578-022-00448-7. DOI

Window A. L.; Holister G. S.. Strain Gauge Technology; Springer Publishing, 1982.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...