Inert Liquid Exfoliation and Langmuir-Type Thin Film Deposition of Semimetallic Metal Diborides
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39382209
PubMed Central
PMC11503910
DOI
10.1021/acsnano.4c04626
Knihovny.cz E-zdroje
- Klíčová slova
- 2D nanomaterials, inert exfoliation, liquid-phase exfoliation, liquid/liquid interface deposition, morphology control, nanomaterial stability, thin films,
- Publikační typ
- časopisecké články MeSH
Graphite is one of only a few layered materials that can be exfoliated into nanosheets with semimetallic properties, which limits the applications of nanosheet-based electrodes to material combinations compatible with the work function of graphene. It is therefore important to identify additional metallic or semimetallic two-dimensional (2D) nanomaterials that can be processed in solution for scalable fabrication of printed electronic devices. Metal diborides represent a family of layered non-van der Waals crystals with semimetallic properties for all nanosheet thicknesses. While previous reports show that the exfoliated nanomaterial is prone to oxidation, we demonstrate a readily accessible inert exfoliation process to produce quasi-2D nanoplatelets with intrinsic material properties. For this purpose, we demonstrate the exfoliation of three representative metal diborides (MgB2, CrB2, and ZrB2) under inert conditions. Nanomaterial is characterized using a combination of transmission electron microscopy, scanning electron microscopy, atomic force microscopy, IR, and UV-vis measurements, with only minimal oxidation indicated postprocessing. By depositing the pristine metal diboride nanoplatelets as thin films using a Langmuir-type deposition technique, the ohmic behavior of the networks is validated. Furthermore, the material decomposition is studied by using a combination of electrical and optical measurements after controlled exposure to ambient conditions. Finally, we report an efficient, low-cost approach for sample encapsulation to protect the nanomaterials from oxidation. This is used to demonstrate low-gauge factor strain sensors, confirming metal diboride nanosheets as a suitable alternative to graphene for electrode materials in printed electronics.
Institute of Physical Chemistry University of Kassel Heinrich Plett Straße 40 34132 Kassel Germany
School of Physics CRANN and AMBER Research Centres Trinity College Dublin Dublin 2 Ireland
Zobrazit více v PubMed
Kelly A. G.; Hallam T.; Backes C.; Harvey A.; Esmaeily A. S.; Godwin I.; Coelho J.; Nicolosi V.; Lauth J.; Kulkarni A.; et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69–73. 10.1126/science.aal4062. PubMed DOI
Chen X.; Wang X.; Pang Y.; Bao G.; Jiang J.; Yang P.; Chen Y.; Rao T.; Liao W. Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. Small Methods 2023, 7, 220115610.1002/smtd.202201156. PubMed DOI
Song O.; Rhee D.; Kim J.; Jeon Y.; Mazánek V.; Söll A.; Kwon Y. A.; Cho J. H.; Kim Y.-H.; Sofer Z.; Kang J. All inkjet-printed electronics based on electrochemically exfoliated two-dimensional metal, semiconductor, and dielectric. npj 2D Mater. Appl. 2022, 6, 64.10.1038/s41699-022-00337-1. DOI
Conti S.; Pimpolari L.; Calabrese G.; Worsley R.; Majee S.; Polyushkin D. K.; Paur M.; Pace S.; Keum D. H.; Fabbri F.; et al. Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper. Nat. Commun. 2020, 11, 356610.1038/s41467-020-17297-z. PubMed DOI PMC
Lee K.; Szydłowska B. M.; Hartwig O.; Synnatschke K.; Tywoniuk B.; Hartman T.; Tomašević-Ilić T.; Gabbett C. P.; Coleman J. N.; Sofer Z.; et al. Highly conductive and long-term stable films from liquid-phase exfoliated platinum diselenide. J. Mater. Chem. C 2023, 11, 593–599. 10.1039/D2TC03889G. DOI
Dai J.; Ogbeide O.; Macadam N.; Sun Q.; Yu W.; Li Y.; Su B.-L.; Hasan T.; Huang X.; Huang W. Printed gas sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. 10.1039/C9CS00459A. PubMed DOI
Sui X.; Rangnekar S. V.; Lee J.; Liu S. E.; Downing J. R.; Chaney L. E.; Yan X.; Jang H.-J.; Pu H.; Shi X.; et al. Fully Inkjet-Printed, 2D Materials-Based Field-Effect Transistor for Water Sensing. Adv. Mater. Technol. 2023, 8, 230128810.1002/admt.202301288. DOI
Zhang R.; Jiang J.; Wu W. Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale 2023, 15, 3079–3105. 10.1039/D2NR05447G. PubMed DOI
Synnatschke K.; van Dinter J.; Müller A.; Tiede D.; Spillecke L.; Shao S.; Kelly D.; Konecny J.; Konkena B.; McCrystall M.; et al. Exfoliablity, magnetism, energy storage and stability of metal thiophosphate nanosheets made in liquid medium. 2D Mater. 2023, 10, 02400310.1088/2053-1583/acba2c. DOI
Xie F.; Xu C.; Song Y.; Liang Q.; Ji J.; Wang S. 2D-2D heterostructure of ionic liquid-exfoliated MoS2/MXene as lithium polysulfide barrier for Li-S batteries. J. Colloid Interface Sci. 2023, 636, 528–536. 10.1016/j.jcis.2023.01.031. PubMed DOI
Islam M. R.; Afroj S.; Karim N. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors. ACS Nano 2023, 17, 18481–18493. 10.1021/acsnano.3c06181. PubMed DOI PMC
Panagiotopoulos A.; Nagaraju G.; Tagliaferri S.; Grotta C.; Sherrell P. C.; Sokolikova M.; Cheng G.; Iacoviello F.; Sharda K.; Mattevi C. 3D printed inks of two-dimensional semimetallic MoS2/TiS2 nanosheets for conductive-additive-free symmetric supercapacitors. J. Mater. Chem. A 2023, 11, 16190–16200. 10.1039/D3TA02508J. DOI
Shanmugam V.; Mensah R. A.; Babu K.; Gawusu S.; Chanda A.; Tu Y.; Neisiany R. E.; Försth M.; Sas G.; Das O. A Review of the Synthesis, Properties, and Applications of 2D Materials. Part. Part. Syst. Charact. 2022, 39, 220003110.1002/ppsc.202200031. DOI
Hernandez Y.; Nicolosi V.; Lotya M.; Blighe F. M.; Sun Z.; De S.; McGovern I. T.; Holland B.; Byrne M.; Gun’Ko Y. K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. 10.1038/nnano.2008.215. PubMed DOI
Khazaei M.; Ranjbar A.; Esfarjani K.; Bogdanovski D.; Dronskowski R.; Yunoki S. Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 2018, 20, 8579–8592. 10.1039/C7CP08645H. PubMed DOI
Er E.; Hou H.-L.; Criado A.; Langer J.; Möller M.; Erk N.; Liz-Marzán L. M.; Prato M. High-Yield Preparation of Exfoliated 1T-MoS2 with SERS Activity. Chem. Mater. 2019, 31, 5725–5734. 10.1021/acs.chemmater.9b01698. DOI
Knirsch K. C.; Berner N. C.; Nerl H. C.; Cucinotta C. S.; Gholamvand Z.; McEvoy N.; Wang Z.; Abramovic I.; Vecera P.; Halik M.; et al. Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. ACS Nano 2015, 9, 6018–6030. 10.1021/acsnano.5b00965. PubMed DOI
Pastoriza-Santos I.; Liz-Marzán L. M. Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem. 2008, 18, 1724–1737. 10.1039/b716538b. DOI
Kelly A. G.; O’Suilleabhain D.; Gabbett C.; Coleman J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 2022, 7, 217–234. 10.1038/s41578-021-00386-w. DOI
van Hazendonk L. S.; Pinto A. M.; Arapov K.; Pillai N.; Beurskens M. R. C.; Teunissen J.-P.; Sneck A.; Smolander M.; Rentrop C. H. A.; Bouten P. C. P.; Friedrich H. Printed Stretchable Graphene Conductors for Wearable Technology. Chem. Mater. 2022, 34, 8031–8042. 10.1021/acs.chemmater.2c02007. PubMed DOI PMC
Gang Z.; Miao Z.; Liu Y.; Huang J.; Chen F.; Fu Q. High thermal conductivity and increased thickness graphene nanosheet films prepared through metal ion-free route. Ceram. Int. 2022, 48, 3711–3719. 10.1016/j.ceramint.2021.10.153. DOI
Zhou X.; Leng T.; Pan K.; Liu Y.; Zhang Z.; Li J.; Novoselov K. S.; Hu Z. A sustainable approach towards printed graphene ink for wireless RFID sensing applications. Carbon 2024, 218, 11869310.1016/j.carbon.2023.118693. DOI
He P.; Zhang Y.; Wang Z.; Min P.; Deng Z.; Li L.; Ye L.; Yu Z.-Z.; Zhang H.-B. An energy-saving structural optimization strategy for high-performance multifunctional graphene films. Carbon 2024, 222, 11893210.1016/j.carbon.2024.118932. DOI
Yildirim T. The surprising superconductor. Mater. Today 2002, 5, 40–44. 10.1016/S1369-7021(02)05424-X. DOI
Yousaf A.; Gilliam M. S.; Chang S. L. Y.; Augustin M.; Guo Y.; Tahir F.; Wang M.; Schwindt A.; Chu X. S.; Li D. O.; et al. Exfoliation of Quasi-Two-Dimensional Nanosheets of Metal Diborides. J. Phys. Chem. C 2021, 125, 6787–6799. 10.1021/acs.jpcc.1c00394. DOI
Jin K.-H.; Huang H.; Mei J.-W.; Liu Z.; Lim L.-K.; Liu F. Topological superconducting phase in high-Tc superconductor MgB2 with Dirac–nodal-line fermions. npj Comput. Mater. 2019, 5, 57.10.1038/s41524-019-0191-2. DOI
Mazin I. I.; Antropov V. P. Electronic structure, electron–phonon coupling, and multiband effects in MgB2. Phys. C 2003, 385, 49–65. 10.1016/S0921-4534(02)02299-2. DOI
Awana V. P. S.; Vajpayee A.; Mudgel M.; Ganesan V.; Awasthi A. M.; Bhalla G. L.; Kishan H. Physical property characterization of bulk MgB2 superconductor. Eur. Phys. J. B 2008, 62, 281–294. 10.1140/epjb/e2008-00174-1. DOI
Bud’ko S. L.; Canfield P. C. Superconductivity of magnesium diboride. Phys. C 2015, 514, 142–151. 10.1016/j.physc.2015.02.024. DOI
Nagamatsu J.; Nakagawa N.; Muranaka T.; Zenitani Y.; Akimitsu J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. 10.1038/35065039. PubMed DOI
Castro Neto A. H.; Guinea F.; Peres N. M. R.; Novoselov K. S.; Geim A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. 10.1103/RevModPhys.81.109. DOI
Backes C.; Campi D.; Szydlowska B. M.; Synnatschke K.; Ojala E.; Rashvand F.; Harvey A.; Griffin A.; Sofer Z.; Marzari N.; et al. Equipartition of Energy Defines the Size–Thickness Relationship in Liquid-Exfoliated Nanosheets. ACS Nano 2019, 13, 7050–7061. 10.1021/acsnano.9b02234. PubMed DOI
Gilliam M. S.; Yousaf A.; Guo Y.; Li D. O.; Momenah A.; Wang Q. H.; Green A. A. Evaluating the Exfoliation Efficiency of Quasi-2D Metal Diboride Nanosheets Using Hansen Solubility Parameters. Langmuir 2021, 37, 1194–1205. 10.1021/acs.langmuir.0c03138. PubMed DOI
Patidar R.; Gunda H.; Varma A. K.; Gawas R.; Das S. K.; Jasuja K. Co-solvent exfoliation of layered titanium diboride into few-layer-thick nanosheets. Ceram. Int. 2020, 46, 28324–28331. 10.1016/j.ceramint.2020.07.336. DOI
Das S. K.; Jasuja K. Chemical Exfoliation of Layered Magnesium Diboride To Yield Functionalized Nanosheets and Nanoaccordions for Potential Flame Retardant Applications. ACS Appl. Nano Mater. 2018, 1, 1612–1622. 10.1021/acsanm.8b00101. DOI
Das S. K.; Bedar A.; Kannan A.; Jasuja K. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Sci. Rep. 2015, 5, 1052210.1038/srep10522. PubMed DOI PMC
Gunda H.; Das S. K.; Jasuja K. Simple, Green, and High-Yield Production of Boron-Based Nanostructures with Diverse Morphologies by Dissolution and Recrystallization of Layered Magnesium Diboride Crystals in Water. ChemPhysChem 2018, 19, 880–891. 10.1002/cphc.201701033. PubMed DOI
Jiang Y.; Ka D.; Huynh A. H.; Baek J.; Ning R.; Yu S.-J.; Zheng X. Exfoliated Magnesium Diboride (MgB2) Nanosheets as Solid Fuels. Nano Lett. 2023, 23, 7968–7974. 10.1021/acs.nanolett.3c01910. PubMed DOI
Padhi S. K.; Liu X.; Valsania M. C.; Andreo L.; Agostino A.; Alessio A.; Pastero L.; Giordana A.; Wu Z.; Cravotto G.; Truccato M. Structure and physicochemical properties of MgB2 nanosheets obtained via sonochemical liquid phase exfoliation. Nano-Struct. Nano-Objects 2023, 35, 10101610.1016/j.nanoso.2023.101016. DOI
Nishino H.; Fujita T.; Yamamoto A.; Fujimori T.; Fujino A.; Ito S.-i.; Nakamura J.; Hosono H.; Kondo T. Formation Mechanism of Boron-Based Nanosheet through the Reaction of MgB2 with Water. J. Phys. Chem. C 2017, 121, 10587–10593. 10.1021/acs.jpcc.7b02348. DOI
James A. L.; Jasuja K. Chelation assisted exfoliation of layered borides towards synthesizing boron based nanosheets. RSC Adv. 2017, 7, 1905–1914. 10.1039/C6RA26658D. DOI
Ratnam D.; Das S. K.; Jasuja K. Ionic Liquid Assisted Exfoliation of Layered Magnesium Diboride. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 225, 01211110.1088/1757-899X/225/1/012111. DOI
Muñiz Diaz R.; Cardoso-Avila P. E.; Pérez Tavares J. A.; Patakfalvi R.; Villa Cruz V.; Pérez Ladrón de Guevara H.; Gutiérrez Coronado O.; Arteaga Garibay R. I.; Saavedra Arroyo Q. E.; Marañón-Ruiz V. F.; Castañeda Contreras J. Two-Step Triethylamine-Based Synthesis of MgO Nanoparticles and Their Antibacterial Effect against Pathogenic Bacteria. Nanomaterials 2021, 11, 410.10.3390/nano11020410. PubMed DOI PMC
Ridings C.; Warr G. G.; Andersson G. G. Composition of the outermost layer and concentration depth profiles of ammonium nitrate ionic liquid surfaces. Phys. Chem. Chem. Phys. 2012, 14, 16088–16095. 10.1039/c2cp43035e. PubMed DOI
Nemes-Incze P.; Osváth Z.; Kamarás K.; Biró L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 2008, 46, 1435–1442. 10.1016/j.carbon.2008.06.022. DOI
Nagashio K.; Yamashita T.; Nishimura T.; Kita K.; Toriumi A. Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 2011, 110, 02451310.1063/1.3611394. DOI
Szendrei K.; Ganter P.; Sànchez-Sobrado O.; Eger R.; Kuhn A.; Lotsch B. V. Touchless Optical Finger Motion Tracking Based on 2D Nanosheets with Giant Moisture Responsiveness. Adv. Mater. 2015, 27, 6341–6348. 10.1002/adma.201503463. PubMed DOI
Backes C.; Smith R. J.; McEvoy N.; Berner N. C.; McCloskey D.; Nerl H. C.; O’Neill A.; King P. J.; Higgins T.; Hanlon D.; et al. Edge and Confinement Effects Allow in situ Measurement of Size and Thickness of Liquid-Exfoliated Nanosheets. Nat. Commun. 2014, 5, 457610.1038/ncomms5576. PubMed DOI
Synnatschke K.; Shao S.; van Dinter J.; Hofstetter Y. J.; Kelly D. J.; Grieger S.; Haigh S. J.; Vaynzof Y.; Bensch W.; Backes C. Liquid exfoliation of Ni2P2S6: Structural characterisation, size-dependent properties and degradation. Chem. Mater. 2019, 31, 9127–9139. 10.1021/acs.chemmater.9b03468. DOI
Gibaja C.; Rodriguez-San-Miguel D.; Ares P.; Gómez-Herrero J.; Varela M.; Gillen R.; Maultzsch J.; Hauke F.; Hirsch A.; Abellán G.; Zamora F. Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew. Chem., Int. Ed. 2016, 55, 14345–14349. 10.1002/anie.201605298. PubMed DOI PMC
Gosch J.; Synnatschke K.; Stock N.; Backes C. Comparative study of sonication-assisted liquid phase exfoliation of six layered coordination polymers. Chem. Commun. 2022, 59, 55–58. 10.1039/D2CC03366F. PubMed DOI
Synnatschke K.; Cieslik P. A.; Harvey A.; Castellanos-Gomez A.; Tian T.; Shih C.-J.; Chernikov A.; Santos E. J. G.; Coleman J. N.; Backes C. Length and thickness dependent optical response of liquid-exfoliated transition metal dichalcogenides. Chem. Mater. 2019, 31, 10049–10062. 10.1021/acs.chemmater.9b02905. DOI
Carey T.; Cassidy O.; Synnatschke K.; Caffrey E.; Garcia J.; Liu S.; Kaur H.; Kelly A. G.; Munuera J.; Gabbett C.; et al. High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides. ACS Nano 2023, 17, 2912–2922. 10.1021/acsnano.2c11319. PubMed DOI PMC
Synnatschke K.Liquid Phase Exfoliation and Size Dependent Properties of van der Waals Crystals; Heidelberg University, 2021.
Paton K. R.; Varrla E.; Backes C.; Smith R. J.; Khan U.; O’Neill A.; Boland C.; Lotya M.; Istrate O. M.; King P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. 10.1038/nmat3944. PubMed DOI
Lange R. Z.; Synnatschke K.; Qi H.; Huber N.; Hofer G.; Liang B.; Huck C.; Pucci A.; Kaiser U.; Backes C.; Schlüter A. D. Enriching and Quantifying Porous Single Layer 2D Polymers by Exfoliation of Chemically Modified van der Waals Crystals. Angew. Chem., Int. Ed. 2020, 59, 5683–5695. 10.1002/anie.201912705. PubMed DOI PMC
Harvey A.; Backes C.; Boland J. B.; He X. Y.; Griffin A.; Szydlowska B.; Gabbett C.; Donegan J. F.; Coleman J. N. Non-resonant light scattering in dispersions of 2D nanosheets. Nat. Commun. 2018, 9 (1), 4553.10.1038/s41467-018-07005-3. PubMed DOI PMC
Zhang J. Z.; Kong N.; Uzun S.; Levitt A.; Seyedin S.; Lynch P. A.; Qin S.; Han M. K.; Yang W. R.; Liu J. Q.; et al. Scalable Manufacturing of Free-Standing, Strong Ti3C2Tx MXene Films with Outstanding Conductivity. Adv. Mater. 2020, 32, 200109310.1002/adma.202001093. PubMed DOI
Kelly A. G.; O’Reilly J.; O’Reilly J.; Gabbett C.; Szydłowska B.; O’Suilleabhain D.; O’Suilleabhain D.; Khan U.; Khan U.; Maughan J.; Maughan J.; Carey T.; Carey T.; Sheil S.; Sheil S.; Stamenov P.; Stamenov P.; Coleman J. N. Highly Conductive Networks of Silver Nanosheets. Small 2022, 18, 210599610.1002/smll.202105996. PubMed DOI
Synnatschke K.; Moses Badlyan N.; Wrzesińska A.; Lozano Onrubia G.; Hansen A. L.; Wolff S.; Tornatzky H.; Bensch W.; Vaynzof Y.; Maultzsch J.; Backes C. Sonication-assisted liquid phase exfoliation of two-dimensional CrTe3 under inert conditions. Ultrason. Sonochem. 2023, 98, 10652810.1016/j.ultsonch.2023.106528. PubMed DOI PMC
Hanlon D.; Backes C.; Doherty E.; Cucinotta C. S.; Berner N. C.; Boland C.; Lee K.; Lynch P.; Gholamvand Z.; Harvey A.; et al. Liquid Exfoliation of Solvent-Stabilised Few-Layer Black Phosphorus for Applications Beyond Electronics. Nat. Commun. 2015, 6, 856310.1038/ncomms9563. PubMed DOI PMC
Abellán G.; Lloret V.; Mundloch U.; Marcia M.; Neiss C.; Görling A.; Varela M.; Hauke F.; Hirsch A. Noncovalent Functionalization of Black Phosphorus. Angew. Chem., Int. Ed. 2016, 55, 14557–14562. 10.1002/anie.201604784. PubMed DOI
Arora H.; Fekri Z.; Vekariya Y. N.; Chava P.; Watanabe K.; Taniguchi T.; Helm M.; Erbe A. Fully Encapsulated and Stable Black Phosphorus Field-Effect Transistors. Adv. Mater. Technol. 2023, 8, 220054610.1002/admt.202200546. DOI
Huang W.; Zhang Y.; Song M.; Wang B.; Hou H.; Hu X.; Chen X.; Zhai T. Encapsulation strategies on 2D materials for field effect transistors and photodetectors. Chin. Chem. Lett. 2022, 33, 2281–2290. 10.1016/j.cclet.2021.08.086. DOI
Pinilla S.; Coelho J.; Li K.; Liu J.; Nicolosi V. Two-dimensional material inks. Nat. Rev. Mater. 2022, 7, 717–735. 10.1038/s41578-022-00448-7. DOI
Window A. L.; Holister G. S.. Strain Gauge Technology; Springer Publishing, 1982.