The impact of single and combined amendment of elemental sulphur and graphene oxide on soil microbiome and nutrient transformation activities
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39391508
PubMed Central
PMC11466584
DOI
10.1016/j.heliyon.2024.e38439
PII: S2405-8440(24)14470-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteria, Fungi, Nanoparticles, Oxidation, Soil enzymes, Soil sulphate,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Sulphur (S) deficiency has emerged in recent years in European soils due to the decreased occurrence of acid rains. Elemental sulphur (S0) is highly beneficial as a source of S in agriculture, but it must be oxidized to a plant-accessible form. Micro- or nano-formulated S0 may undergo accelerated transformation, as the oxidation rate of S0 indirectly depends on particle size. Graphene oxide (GO) is a 2D-carbon-based nanomaterial with benefits as soil amendment, which could modulate the processes of S0 oxidation. Micro-and nano-sized composites, comprised of S0 and GO, were tested as soil amendments in a pot experiment with unplanted soil to assess their effects on soil microbial biomass, activity, and transformation to sulphates. Fourteen different variants were tested, based on solely added GO, solely added micro- or nano-sized S0 (each in three different doses) and on a combination of all S0 doses with GO. RESULTS: Compared to unamended soil, nano-S0 and nano-S0+GO increased soil pH(CaCl2). Micro-S0 (at a dose 4 g kg-1) increased soil pH(CaCl2), whereas micro-S0+GO (at a dose 4 g kg-1) decreased soil pH(CaCl2). The total bacterial and ammonium oxidizer microbial abundance decreased due to micro-S0 and nano-S0 amendment, with an indirect dependence on the amended dose. This trend was alleviated by the co-application of GO. Urease activity showed a distinct response to micro-S0+GO (decreased value) and nano-S0+GO amendment (increased value). Arylsulfatase was enhanced by micro-S0+GO, while sulphur reducing bacteria (dsr) increased proliferation due to high micro-S0 and nano-S0, and co-amendment of both with GO. In comparison to nano-S0, the amendment of micro-S0+GO more increased soluble sulphur content more significantly. CONCLUSIONS: Under the conditions of this soil experiment, graphene oxide exhibited a significant effect on the process of sulphur oxidation.
Agricultural Research Ltd Zahradni 400 664 41 Troubsko Czech Republic
Agrovyzkum Rapotin Ltd Vyzkumniku 863 788 13 Rapotin Czech Republic
Department of Chemistry and Biochemistry Mendel University in Brno 613 00 Brno Czech Republic
Zobrazit více v PubMed
Stewart W.M. vol. 7. International Plant Nutrition Institute (IPNI); 2010. (Sulfur - the 4th Major Nutrient (Plant Nutrition Today).
Davidian J.-C., Kopriva S. Regulation of sulfate uptake and assimilation—the same or not the same? Mol. Plant. 2010;3:314–325. doi: 10.1093/mp/ssq001. PubMed DOI
Narayan O.P., et al. Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav. 2022 doi: 10.1080/15592324.2022.2030082. PubMed DOI PMC
Etienne P., et al. Assessment of sulfur deficiency under field conditions by single measurements of sulfur, chloride and phosphorus in mature leaves. Plants. 2018;7:37. PubMed PMC
McGrath S., et al. Proceedings-Fertiliser Society. 1996. Development of sulphur deficiency in crops and its treatment. United Kingdom.
Feinberg A., et al. Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Communications Earth & Environment. 2021;2:101.
Hoesly R.M., et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) Geosci. Model Dev. (GMD) 2018;11:369–408. doi: 10.5194/gmd-11-369-2018. DOI
Grennfelt P., et al. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio. 2020;49:849–864. doi: 10.1007/s13280-019-01244-4. PubMed DOI PMC
Kulhánek M., et al. Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils. Plant Soil Environ. 2018;64 doi: 10.17221/372/2018-PSE. DOI
Poser M., et al. A two-stage biogas desulfurization process using cellular concrete filtration and an anoxic biotrickling filter. Energies. 2022;15:14. doi: 10.3390/en15103762. DOI
Torres-Herrera S., et al. Optimization of biogenic sulfur flocculation from an anoxic desulfurization bioreactor using response surface methodology. Fuel. 2022;323:8. doi: 10.1016/j.fuel.2022.124367. DOI
Zhou Y., et al. Microaerobic desulfurization in the semi-dry fermentation of cow manure. J. Biobased Mater. Bioenergy. 2019;13:62–68. doi: 10.1166/jbmb.2019.1826. DOI
Bouranis D.L., et al. Impact of elemental sulfur on the rhizospheric bacteria of durum wheat crop cultivated on a calcareous soil. Plants. 2019;8:379. doi: 10.3390/plants8100379. PubMed DOI PMC
Škarpa P., et al. Using waste sulfur from biogas production in combination with nitrogen fertilization of maize (Zea mays L.) by foliar application. Plants. 2021;10:2188. PubMed PMC
Teng Y., et al. Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit. Rev. Environ. Sci. Technol. 2019;49:2314–2358. doi: 10.1080/10643389.2019.1609856. DOI
Skwierawska M., et al. The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant Soil Environ. 2008;54:171–177. doi: 10.17221/391-PSE. DOI
Salac I., et al. Influence of sulfur fertilization on sulfur metabolites, disease incidence and severity of fungal pathogens in oilseed rape in Scotland. Landbauforschung Volkenrode. 2006;56:1–4.
Sarda X., et al. Assessment of sulphur deficiency in commercial oilseed rape crops from plant analysis. J. Agric. Sci. 2013;152:616–633. doi: 10.1017/s0021859613000105. DOI
Abou Hussien E., et al. Influence of sulphur compost application on some chemical properties of calcareous soil and consequent responses of hordeum vulgare L. Plants. Egypt. J. Soil Sci. 2020;60:67–82. doi: 10.21608/ejss.2019.18503.1318. DOI
Roig A., et al. The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere. 2004;57:1099–1105. doi: 10.1016/j.chemosphere.2004.08.024. PubMed DOI
Cowell L.E., Schoenau J.J. Stimulation of elemental sulfur oxidation by sewage-sludge. Can. J. Soil Sci. 1995;75:247–249. doi: 10.4141/cjss95-035. DOI
Skwierawska M., et al. Sulphur as a fertiliser component determining crop yield and quality. Journal of Elementology. 2016;21:609–623. doi: 10.5601/jelem.2015.20.3.992. DOI
Besharati H. Effects of sulfur application and Thiobacillus inoculation on soil nutrient availability, wheat yield and plant nutrient concentration in calcareous soils with different calcium carbonate content. J. Plant Nutr. 2017;40:447–456. doi: 10.1080/01904167.2016.1245326. DOI
Soaud A.A., et al. Effects of elemental sulfur, phosphorus, micronutrients and Paracoccus versutus on nutrient availability of calcareous soils. Aust. J. Crop. Sci. 2011;5:554–561.
Soltanaeva A., et al. Effect of sulfur-containing fertilizers on the chemical properties of soil and winter wheat yield. Bulg. J. Agric. Sci. 2018;24:586–591.
Fuentes-Lara L.O., et al. From elemental sulfur to hydrogen sulfide in agricultural soils and plants. Molecules. 2019;24 doi: 10.3390/molecules24122282. PubMed DOI PMC
Lee A., et al. Effect of particle size on the oxidation of elemental sulphur, thiobacilli numbers, soil sulphate, and its availability to pasture. New Zealand Journal of Agricultural Research. 2011;31:179–186. doi: 10.1080/00288233.1988.10417943. DOI
Lucheta A.R., Lambais M.R. Sulfur in agriculture. Rev. Bras. Ciência do Solo. 2012;36:1369–1379. doi: 10.1590/s0100-06832012000500001. DOI
Degryse F., et al. Long-term fate of fertilizer sulfate- and elemental S in co-granulated fertilizers. Nutrient Cycl. Agroecosyst. 2021;120:31–48. doi: 10.1007/s10705-021-10137-6. DOI
Germida J.J., Janzen H.H. Factors affecting the oxidation of elemental sulfur in soils. Fert. Res. 1993;35:101–114. doi: 10.1007/bf00750224. DOI
Tourna M., et al. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 2014;88:538–549. doi: 10.1111/1574-6941.12323. PubMed DOI
Kumar U., et al. In: Advances in Soil Microbiology: Recent Trends and Future Prospects. Adhya T.K., et al., editors. vol. 1. Springer-Verlag Singapore Pte Ltd; 2018. Diversity of sulfur-oxidizing and sulfur-reducing microbes in diverse ecosystems; pp. 65–89. (Soil-Microbe Interaction).
Zhao C.C., et al. Water content and communities of sulfur-oxidizing bacteria affect elemental sulfur oxidation in silty and sandy loam soils. Eur. J. Soil Biol. 2022;111:10. doi: 10.1016/j.ejsobi.2022.103419. DOI
Massalimov I., et al. Assessment of antifungal activity of micronized and nanosized elemental sulfur. Nanotechnol. Nanosci. 2012;3:55–58.
Williams J.S., Cooper R.M. The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol. 2004;53:263–279. doi: 10.1111/j.0032-0862.2004.01010.x. DOI
Watkinson J.H., Blair G.J. Modelling the oxidation of elemental sulfur in soils. Fert. Res. 1993;35:115–126.
Chapman S.J. Oxidation of micronized elemental sulphur in soil. Plant Soil. 1989;116:69–76. doi: 10.1007/bf02327258. DOI
Matamwa W., et al. Plant availability of sulfur added to finished fertilizers. Commun. Soil Sci. Plant Anal. 2018;49:433–443. doi: 10.1080/00103624.2018.1430236. DOI
Dixit G., et al. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci. Rep. 2015;5 doi: 10.1038/srep16205. PubMed DOI PMC
Almutairi K.F., et al. Chemigation with micronized sulfur rapidly reduces soil pH in a new planting of northern highbush blueberry. Hortscience. 2017;52:1413–1418. doi: 10.21273/hortsci12313-17. DOI
Hu Z.Y., et al. Sulfate formation and extraction from Red soil treated with micronized elemental sulfur fertilizer and incubated in closed and open systems. Commun. Soil Sci. Plant Anal. 2007;33:1779–1797. doi: 10.1081/css-120004822. DOI
Gadino A.N., et al. Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: phytoseiidae), in laboratory bioassays. J. Econ. Entomol. 2011;104:970–977. doi: 10.1603/ec10330. PubMed DOI
Hegedüs M., et al. Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a “micro-nano” route. J. Mater. Sci. 2018;53:13617–13630. doi: 10.1007/s10853-018-2228-1. DOI
Lonkar S.P., et al. Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-31539-7. PubMed DOI PMC
Massalimov I.A., et al. Chemical precipitation of sulfur nanoparticles from aqueous solutions. Russ. J. Appl. Chem. 2014;87:700–708. doi: 10.1134/s1070427214060068. DOI
Sun H., et al. A composite material of uniformly dispersed sulfur on reduced graphene oxide: aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 2012;5:726–738. doi: 10.1007/s12274-012-0257-7. DOI
Raghavan N., et al. Investigation of photocatalytic performances of sulfur based reduced graphene oxide-TiO2 nanohybrids. Appl. Surf. Sci. 2018;449:712–718. doi: 10.1016/j.apsusc.2018.01.043. DOI
Baragano D., et al. Nanoremediation of as and metals polluted soils by means of graphene oxide nanoparticles. Sci. Rep. 2020;10:1896. doi: 10.1038/s41598-020-58852-4. PubMed DOI PMC
Mandal S., et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil. Environ. Pollut. 2020;259:14. doi: 10.1016/j.envpol.2019.113851. PubMed DOI
Zhao D., et al. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to paeonia ostii without toxicity. Environ. Sci. Technol. 2020;54:8269–8279. doi: 10.1021/acs.est.0c02040. PubMed DOI
Sangani M.F., et al. Transport of engineered nanoparticles in soils and aquifers. Environ. Rev. 2019;27:43–70. doi: 10.1139/er-2018-0022. DOI
Xia T., et al. Co-transport of negatively charged nanoparticles in saturated porous media: impacts of hydrophobicity and surface O-functional groups. J. Hazard Mater. 2021;409 doi: 10.1016/j.jhazmat.2020.124477. PubMed DOI
Qi Z.C., et al. Transport of graphene oxide nanoparticles in saturated sandy soil. Environ. Sci.-Process Impacts. 2014;16:2268–2277. doi: 10.1039/c4em00063c. PubMed DOI
Zhao L., et al. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants. Front. Plant Sci. 2022;13 doi: 10.3389/fpls.2022.810905. PubMed DOI PMC
Carneiro J.S.D., et al. Biochar-graphene oxide composite is efficient to adsorb and deliver copper and zinc in tropical soil. J. Clean. Prod. 2022;360:13. doi: 10.1016/j.jclepro.2022.132170. DOI
Kabiri S., et al. Graphene oxide: a new carrier for slow release of plant micronutrients. ACS Appl. Mater. Interfaces. 2017;9:43325–43335. doi: 10.1021/acsami.7b07890. PubMed DOI
Li T., et al. Chitosan and graphene oxide nanocomposites as coatings for controlled-release fertilizer. Water, Air, Soil Pollut. 2019;230:146. doi: 10.1007/s11270-019-4173-2. DOI
Mohammadi Alagoz S., et al. 2022. Impact on Nutritional Status of Plants Treated with Nanoparticles. in.
Juarez-Maldonado A., et al. Nanoparticles and nanomaterials as plant biostimulants. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20010162. PubMed DOI PMC
Lahiani M.H., et al. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 2015;81:607–619. doi: 10.1016/j.carbon.2014.09.095. DOI
Arikan B., et al. Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. Chemosphere. 2022;307 doi: 10.1016/j.chemosphere.2022.136048. PubMed DOI
Sengupta S., et al. Adsorption of arsenic on graphene oxide, reduced graphene oxide, and their Fe3O4 doped nanocomposites. Biointerface Research in Applied Chemistry. 2021;12:6196–6210. doi: 10.33263/BRIAC125.61966210. DOI
Zhang Q., et al. Removal of heavy metals in aquatic environment by graphene oxide composites: a review. Environ. Sci. Pollut. Res. Int. 2020;27:190–209. doi: 10.1007/s11356-019-06683-w. PubMed DOI
Kulshrestha S., et al. Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms. Microb. Pathog. 2017;103:167–177. doi: 10.1016/j.micpath.2016.12.022. PubMed DOI
Gurunathan S. Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. J. Ind. Eng. Chem. 2015;32:282–291. doi: 10.1016/j.jiec.2015.08.027. DOI
Chung H., et al. Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci. Total Environ. 2015;514:307–313. doi: 10.1016/j.scitotenv.2015.01.077. PubMed DOI
Ge Y., et al. Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil. Environ. Sci. Technol. 2016;50:3965–3974. doi: 10.1021/acs.est.5b05620. PubMed DOI
Wang D., et al. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresour. Technol. 2013;131:527–530. doi: 10.1016/j.biortech.2013.01.099. PubMed DOI
Du J., et al. Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Adv. 2015;5:27009–27017. doi: 10.1039/c5ra01045d. DOI
Forstner C., et al. Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Sci. Total Environ. 2019;682:356–363. doi: 10.1016/j.scitotenv.2019.05.162. PubMed DOI
Luo N., et al. Graphene oxide influences on bacterial community diversity of larix olgensis rhizosphere of haplic cambisols in northeast China. Eurasian Soil Sci. 2022;55:1470–1481. doi: 10.1134/S1064229322100106. DOI
Hammerschmiedt T., et al. Impact of smart combinations of graphene oxide and micro/nanosized sulfur particles on soil health and plant biomass accumulation. Chem. Biol. Technol. Agric. 2022;9:13. doi: 10.1186/s40538-022-00323-1. DOI
Yap P.L., et al. Tuning the multifunctional surface chemistry of reduced graphene oxide via combined elemental doping and chemical modifications. ACS Omega. 2019;4:19787–19798. doi: 10.1021/acsomega.9b02642. PubMed DOI PMC
Gupta V.K., et al. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq. 2015;208:122–129. doi: 10.1016/j.molliq.2015.04.032. DOI
Liu G., et al. Metal-organic framework preparation using magnetic graphene oxide-beta-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr. Polym. 2017;175:584–591. doi: 10.1016/j.carbpol.2017.06.074. PubMed DOI
Zahedi S.M., et al. Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): a new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera L. cv Sultana) Plant Stress. 2023;7:10. doi: 10.1016/j.stress.2022.100128. DOI
Huang M., et al. Facile ball milling preparation of sulfur-doped carbon as peroxymonosulfate activator for efficient removal of organic pollutants. J. Environ. Chem. Eng. 2021;9 doi: 10.1016/j.jece.2021.106536. DOI
Jeon C., et al. Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar. J. Hazard Mater. 2020;388 doi: 10.1016/j.jhazmat.2020.122048. PubMed DOI
Yang X., et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J. 2019;366:608–621. doi: 10.1016/j.cej.2019.02.119. PubMed DOI PMC
Hammerschmiedt T., et al. The combined effect of graphene oxide and elemental nano-sulfur on soil biological properties and lettuce plant biomass. Front. Plant Sci. 2023;14 doi: 10.3389/fpls.2023.1057133. PubMed DOI PMC
Hammerschmiedt T., et al. Impact of smart combinations of graphene oxide and micro/nanosized sulfur particles on soil health and plant biomass accumulation. Chemical and Biological Technologies in Agriculture. 2022;9:53. doi: 10.1186/s40538-022-00323-1. DOI
ISO_10694 . International Organization for Standardization; 1995. Soil Quality - Determination of Organic and Total Carbon after Dry Combustion (Elemental Analysis)
ISO_13878 . International Organization for Standardization; 1998. Soil Quality - Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis)
Mehlich A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 2008;15:1409–1416. doi: 10.1080/00103628409367568. DOI
ISO_10390 . International Organization for Standardization; 2005. Soil Quality - Determination of pH.
Zbíral J. 2022. Jednotné Pracovní Postupy. Analýza Půd III. Ústřední Kontrolní a Zkušební Ústav Zemědělský.
ISO_20130 . 2018. Soil Quality — Measurement of Enzyme Activity Patterns in Soil Samples Using Colorimetric Substrates in Micro-well Plates.
Amann R.I., et al. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. PubMed DOI PMC
Vainio E.J., Hantula J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 2000;104:927–936. doi: 10.1017/s0953756200002471. DOI
Rotthauwe J.H., et al. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997. PubMed DOI PMC
Ben-Dov E., et al. Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microb. Ecol. 2007;54:439–451. doi: 10.1007/s00248-007-9233-2. PubMed DOI
R_Core_Team . R Foundation for Statistical Computing; 2023. R: A Language and Environment for Statistical Computing.
RStudio_Team . 12.1 ed. RStudio, Inc; 2023. RStudio: Integrated Development for R.
Zar J.H. second ed. Prentice-Hall Internat; 1984. Biostatistical Analysis.
Pekár S., Brabec M. Masaryk University Press; 2016. Modern Analysis of Biological Data. Generalized Linear Models in R.
Lehr C.R., et al. Sulfur dynamics in wetland soils: the critical role of elemental sulfur. Environ. Sci. Technol. 2017;51:8371–8379.
Souri B., Sayadi Z. Efficiency of sulfur-bentonite granules to improve uptake of nutrient elements by the crop plant cultivated in calcareous soil. Commun. Soil Sci. Plant Anal. 2021;52:2414–2430. doi: 10.1080/00103624.2021.1928173. DOI
Zhao C., et al. Effects of pH and ionic strength on elemental sulphur oxidation in soil. Biol. Fertil. Soils. 2017;53:247–256. doi: 10.1007/s00374-016-1170-0. DOI
Jamialahmadi N., et al. Interaction of graphene oxide nano-sheets and landfill leachate bacterial culture. Environ. Technol. 2018;39:2457–2466. doi: 10.1080/09593330.2017.1356875. PubMed DOI
Quezada-Renteria J.A., et al. Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide. Carbon. 2019;149:722–732. doi: 10.1016/j.carbon.2019.04.109. DOI
Yang Z., et al. Effect of repeated applications of elemental sulfur on microbial population, sulfate concentration, and pH in soils. Commun. Soil Sci. Plant Anal. 2007;39:124–140. doi: 10.1080/00103620701759079. DOI
McTee M.R., et al. Restoring ecological properties of acidic soils contaminated with elemental sulfur. Sci. Total Environ. 2017;587:449–456. doi: 10.1016/j.scitotenv.2017.02.110. PubMed DOI
Bewley R.J.F., Parkinson D. Bacterial and fungal activity in sulphur dioxide polluted soils. Can. J. Microbiol. 1985;31:13–15. doi: 10.1139/m85-003. DOI
Gupta V.V.S.R., et al. vol. 68. 1988. (Impact of Elemental Sulfur Fertilization on Agricultural Soils. I. Effects on Microbial Biomass and Enzyme Activities).
Fang J., et al. Graphene oxide decreases the abundance of nitrogen cycling microbes and slows nitrogen transformation in soils. Chemosphere. 2022;309 doi: 10.1016/j.chemosphere.2022.136642. PubMed DOI
Forstner C., et al. Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Sci. Total Environ. 2019;671:140–148. doi: 10.1016/j.scitotenv.2019.03.360. PubMed DOI
Joshi N., et al. Novel sulphur-oxidizing bacteria consummate sulphur deficiency in oil seed crop. Arch. Microbiol. 2021;203:1–6. doi: 10.1007/s00203-020-02009-4. PubMed DOI
Zebarth B.J., et al. Effect of soil acidification on nitrification in soil. Can. J. Soil Sci. 2015;95:359–363. doi: 10.4141/cjss-2015-040. DOI
Das P., et al. Impacts of graphitic nanofertilizers on nitrogen cycling in a sandy, agricultural soil. J. Nanoparticle Res. 2022;24 doi: 10.1007/s11051-022-05500-9. DOI
Wu C., et al. Adsorption of ammonium by graphene oxide-based composites prepared by UV irradiation and using as slow-release fertilizer. J. Polym. Environ. 2018;26:4311–4320. doi: 10.1007/s10924-018-1302-8. DOI
Danilov M., et al. Reduced graphene oxide: a promising electrode material for oxygen electrodes. Journal of Nanostructure in Chemistry. 2013;3:49. doi: 10.1186/2193-8865-3-49. DOI
Czaban J., Kobus J. Oxidation of elemental sulfur by bacteria and fungi in soil. Acta Microbiol. Pol. 2000;49:135–147. PubMed
Carniel F.C., et al. Graphene environmental biodegradation: wood degrading and saprotrophic fungi oxidize few-layer graphene. J. Hazard Mater. 2021;414(9) doi: 10.1016/j.jhazmat.2021.125553. PubMed DOI
Godlewska A. Assessment of the effect of NPK fertilisation and elemental sulphur on soil enzyme activity. Fresenius Environ. Bull. 2018;27:180–186.
Hammerschmiedt T., et al. Biochar and sulphur enriched digestate: utilization of agriculture associated waste products for improved soil carbon and nitrogen content, microbial activity, and plant growth. Agronomy-Basel. 2021;11:14. doi: 10.3390/agronomy11102041. DOI
Zhao Y.W., et al. Effects of sulfur fertilization on soybean root and leaf traits, and soil microbial activity. J. Plant Nutr. 2008;31:473–483. doi: 10.1080/01904160801895001. DOI
Song J., et al. Graphene oxide affects growth and physiological indexes in Larix olgensis seedlings and the soil properties of Haplic Cambisols in Northeast China. Environ. Sci. Pollut. Res. Int. 2021 doi: 10.1007/s11356-020-11972-w. PubMed DOI
Ye R., et al. Microbial response of a calcareous histosol to sulfur amendment. Soil Sci. 2011;176:479–486. doi: 10.1097/SS.0b013e31822769e7. DOI
Song J.F., et al. Effects of graphene on larix olgensis seedlings and soil properties of haplic cambisols in Northeast China. Forests. 2020;11:16. doi: 10.3390/f11030258. PubMed DOI
Malik K.M., et al. Organic amendments and elemental sulfur stimulate microbial biomass and sulfur oxidation in alkaline subtropical soils. Agronomy-Basel. 2021;11:18. doi: 10.3390/agronomy11122514. DOI
Yan C., et al. Iris pseudacorus as precursor affecting ecological transformation of graphene oxide and performance of constructed wetland. J. Hazard Mater. 2022;436 doi: 10.1016/j.jhazmat.2022.129164. PubMed DOI
Kelleher B.P., et al. Large perturbations in CO2 flux and subsequent chemosynthesis are induced in agricultural soil by the addition of elemental sulfur. Sci. Rep. 2017;7:4732. doi: 10.1038/s41598-017-04934-9. PubMed DOI PMC
Zhang H., et al. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study. Appl. Surf. Sci. 2014;324 doi: 10.1016/j.apsusc.2014.10.087. DOI