The impact of single and combined amendment of elemental sulphur and graphene oxide on soil microbiome and nutrient transformation activities

. 2024 Oct 15 ; 10 (19) : e38439. [epub] 20240925

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39391508
Odkazy

PubMed 39391508
PubMed Central PMC11466584
DOI 10.1016/j.heliyon.2024.e38439
PII: S2405-8440(24)14470-2
Knihovny.cz E-zdroje

BACKGROUND: Sulphur (S) deficiency has emerged in recent years in European soils due to the decreased occurrence of acid rains. Elemental sulphur (S0) is highly beneficial as a source of S in agriculture, but it must be oxidized to a plant-accessible form. Micro- or nano-formulated S0 may undergo accelerated transformation, as the oxidation rate of S0 indirectly depends on particle size. Graphene oxide (GO) is a 2D-carbon-based nanomaterial with benefits as soil amendment, which could modulate the processes of S0 oxidation. Micro-and nano-sized composites, comprised of S0 and GO, were tested as soil amendments in a pot experiment with unplanted soil to assess their effects on soil microbial biomass, activity, and transformation to sulphates. Fourteen different variants were tested, based on solely added GO, solely added micro- or nano-sized S0 (each in three different doses) and on a combination of all S0 doses with GO. RESULTS: Compared to unamended soil, nano-S0 and nano-S0+GO increased soil pH(CaCl2). Micro-S0 (at a dose 4 g kg-1) increased soil pH(CaCl2), whereas micro-S0+GO (at a dose 4 g kg-1) decreased soil pH(CaCl2). The total bacterial and ammonium oxidizer microbial abundance decreased due to micro-S0 and nano-S0 amendment, with an indirect dependence on the amended dose. This trend was alleviated by the co-application of GO. Urease activity showed a distinct response to micro-S0+GO (decreased value) and nano-S0+GO amendment (increased value). Arylsulfatase was enhanced by micro-S0+GO, while sulphur reducing bacteria (dsr) increased proliferation due to high micro-S0 and nano-S0, and co-amendment of both with GO. In comparison to nano-S0, the amendment of micro-S0+GO more increased soluble sulphur content more significantly. CONCLUSIONS: Under the conditions of this soil experiment, graphene oxide exhibited a significant effect on the process of sulphur oxidation.

Zobrazit více v PubMed

Stewart W.M. vol. 7. International Plant Nutrition Institute (IPNI); 2010. (Sulfur - the 4th Major Nutrient (Plant Nutrition Today).

Davidian J.-C., Kopriva S. Regulation of sulfate uptake and assimilation—the same or not the same? Mol. Plant. 2010;3:314–325. doi: 10.1093/mp/ssq001. PubMed DOI

Narayan O.P., et al. Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav. 2022 doi: 10.1080/15592324.2022.2030082. PubMed DOI PMC

Etienne P., et al. Assessment of sulfur deficiency under field conditions by single measurements of sulfur, chloride and phosphorus in mature leaves. Plants. 2018;7:37. PubMed PMC

McGrath S., et al. Proceedings-Fertiliser Society. 1996. Development of sulphur deficiency in crops and its treatment. United Kingdom.

Feinberg A., et al. Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Communications Earth & Environment. 2021;2:101.

Hoesly R.M., et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) Geosci. Model Dev. (GMD) 2018;11:369–408. doi: 10.5194/gmd-11-369-2018. DOI

Grennfelt P., et al. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio. 2020;49:849–864. doi: 10.1007/s13280-019-01244-4. PubMed DOI PMC

Kulhánek M., et al. Potential of Mehlich 3 method for extracting plant available sulfur in the Czech agricultural soils. Plant Soil Environ. 2018;64 doi: 10.17221/372/2018-PSE. DOI

Poser M., et al. A two-stage biogas desulfurization process using cellular concrete filtration and an anoxic biotrickling filter. Energies. 2022;15:14. doi: 10.3390/en15103762. DOI

Torres-Herrera S., et al. Optimization of biogenic sulfur flocculation from an anoxic desulfurization bioreactor using response surface methodology. Fuel. 2022;323:8. doi: 10.1016/j.fuel.2022.124367. DOI

Zhou Y., et al. Microaerobic desulfurization in the semi-dry fermentation of cow manure. J. Biobased Mater. Bioenergy. 2019;13:62–68. doi: 10.1166/jbmb.2019.1826. DOI

Bouranis D.L., et al. Impact of elemental sulfur on the rhizospheric bacteria of durum wheat crop cultivated on a calcareous soil. Plants. 2019;8:379. doi: 10.3390/plants8100379. PubMed DOI PMC

Škarpa P., et al. Using waste sulfur from biogas production in combination with nitrogen fertilization of maize (Zea mays L.) by foliar application. Plants. 2021;10:2188. PubMed PMC

Teng Y., et al. Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Crit. Rev. Environ. Sci. Technol. 2019;49:2314–2358. doi: 10.1080/10643389.2019.1609856. DOI

Skwierawska M., et al. The effect of different rates and forms of sulphur applied on changes of soil agrochemical properties. Plant Soil Environ. 2008;54:171–177. doi: 10.17221/391-PSE. DOI

Salac I., et al. Influence of sulfur fertilization on sulfur metabolites, disease incidence and severity of fungal pathogens in oilseed rape in Scotland. Landbauforschung Volkenrode. 2006;56:1–4.

Sarda X., et al. Assessment of sulphur deficiency in commercial oilseed rape crops from plant analysis. J. Agric. Sci. 2013;152:616–633. doi: 10.1017/s0021859613000105. DOI

Abou Hussien E., et al. Influence of sulphur compost application on some chemical properties of calcareous soil and consequent responses of hordeum vulgare L. Plants. Egypt. J. Soil Sci. 2020;60:67–82. doi: 10.21608/ejss.2019.18503.1318. DOI

Roig A., et al. The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere. 2004;57:1099–1105. doi: 10.1016/j.chemosphere.2004.08.024. PubMed DOI

Cowell L.E., Schoenau J.J. Stimulation of elemental sulfur oxidation by sewage-sludge. Can. J. Soil Sci. 1995;75:247–249. doi: 10.4141/cjss95-035. DOI

Skwierawska M., et al. Sulphur as a fertiliser component determining crop yield and quality. Journal of Elementology. 2016;21:609–623. doi: 10.5601/jelem.2015.20.3.992. DOI

Besharati H. Effects of sulfur application and Thiobacillus inoculation on soil nutrient availability, wheat yield and plant nutrient concentration in calcareous soils with different calcium carbonate content. J. Plant Nutr. 2017;40:447–456. doi: 10.1080/01904167.2016.1245326. DOI

Soaud A.A., et al. Effects of elemental sulfur, phosphorus, micronutrients and Paracoccus versutus on nutrient availability of calcareous soils. Aust. J. Crop. Sci. 2011;5:554–561.

Soltanaeva A., et al. Effect of sulfur-containing fertilizers on the chemical properties of soil and winter wheat yield. Bulg. J. Agric. Sci. 2018;24:586–591.

Fuentes-Lara L.O., et al. From elemental sulfur to hydrogen sulfide in agricultural soils and plants. Molecules. 2019;24 doi: 10.3390/molecules24122282. PubMed DOI PMC

Lee A., et al. Effect of particle size on the oxidation of elemental sulphur, thiobacilli numbers, soil sulphate, and its availability to pasture. New Zealand Journal of Agricultural Research. 2011;31:179–186. doi: 10.1080/00288233.1988.10417943. DOI

Lucheta A.R., Lambais M.R. Sulfur in agriculture. Rev. Bras. Ciência do Solo. 2012;36:1369–1379. doi: 10.1590/s0100-06832012000500001. DOI

Degryse F., et al. Long-term fate of fertilizer sulfate- and elemental S in co-granulated fertilizers. Nutrient Cycl. Agroecosyst. 2021;120:31–48. doi: 10.1007/s10705-021-10137-6. DOI

Germida J.J., Janzen H.H. Factors affecting the oxidation of elemental sulfur in soils. Fert. Res. 1993;35:101–114. doi: 10.1007/bf00750224. DOI

Tourna M., et al. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiol. Ecol. 2014;88:538–549. doi: 10.1111/1574-6941.12323. PubMed DOI

Kumar U., et al. In: Advances in Soil Microbiology: Recent Trends and Future Prospects. Adhya T.K., et al., editors. vol. 1. Springer-Verlag Singapore Pte Ltd; 2018. Diversity of sulfur-oxidizing and sulfur-reducing microbes in diverse ecosystems; pp. 65–89. (Soil-Microbe Interaction).

Zhao C.C., et al. Water content and communities of sulfur-oxidizing bacteria affect elemental sulfur oxidation in silty and sandy loam soils. Eur. J. Soil Biol. 2022;111:10. doi: 10.1016/j.ejsobi.2022.103419. DOI

Massalimov I., et al. Assessment of antifungal activity of micronized and nanosized elemental sulfur. Nanotechnol. Nanosci. 2012;3:55–58.

Williams J.S., Cooper R.M. The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of elemental sulphur. Plant Pathol. 2004;53:263–279. doi: 10.1111/j.0032-0862.2004.01010.x. DOI

Watkinson J.H., Blair G.J. Modelling the oxidation of elemental sulfur in soils. Fert. Res. 1993;35:115–126.

Chapman S.J. Oxidation of micronized elemental sulphur in soil. Plant Soil. 1989;116:69–76. doi: 10.1007/bf02327258. DOI

Matamwa W., et al. Plant availability of sulfur added to finished fertilizers. Commun. Soil Sci. Plant Anal. 2018;49:433–443. doi: 10.1080/00103624.2018.1430236. DOI

Dixit G., et al. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Sci. Rep. 2015;5 doi: 10.1038/srep16205. PubMed DOI PMC

Almutairi K.F., et al. Chemigation with micronized sulfur rapidly reduces soil pH in a new planting of northern highbush blueberry. Hortscience. 2017;52:1413–1418. doi: 10.21273/hortsci12313-17. DOI

Hu Z.Y., et al. Sulfate formation and extraction from Red soil treated with micronized elemental sulfur fertilizer and incubated in closed and open systems. Commun. Soil Sci. Plant Anal. 2007;33:1779–1797. doi: 10.1081/css-120004822. DOI

Gadino A.N., et al. Impact of vineyard pesticides on a beneficial arthropod, Typhlodromus pyri (Acari: phytoseiidae), in laboratory bioassays. J. Econ. Entomol. 2011;104:970–977. doi: 10.1603/ec10330. PubMed DOI

Hegedüs M., et al. Mechanochemical approach to a Cu2ZnSnS4 solar cell absorber via a “micro-nano” route. J. Mater. Sci. 2018;53:13617–13630. doi: 10.1007/s10853-018-2228-1. DOI

Lonkar S.P., et al. Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-31539-7. PubMed DOI PMC

Massalimov I.A., et al. Chemical precipitation of sulfur nanoparticles from aqueous solutions. Russ. J. Appl. Chem. 2014;87:700–708. doi: 10.1134/s1070427214060068. DOI

Sun H., et al. A composite material of uniformly dispersed sulfur on reduced graphene oxide: aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 2012;5:726–738. doi: 10.1007/s12274-012-0257-7. DOI

Raghavan N., et al. Investigation of photocatalytic performances of sulfur based reduced graphene oxide-TiO2 nanohybrids. Appl. Surf. Sci. 2018;449:712–718. doi: 10.1016/j.apsusc.2018.01.043. DOI

Baragano D., et al. Nanoremediation of as and metals polluted soils by means of graphene oxide nanoparticles. Sci. Rep. 2020;10:1896. doi: 10.1038/s41598-020-58852-4. PubMed DOI PMC

Mandal S., et al. Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil. Environ. Pollut. 2020;259:14. doi: 10.1016/j.envpol.2019.113851. PubMed DOI

Zhao D., et al. Graphene oxide as an effective soil water retention agent can confer drought stress tolerance to paeonia ostii without toxicity. Environ. Sci. Technol. 2020;54:8269–8279. doi: 10.1021/acs.est.0c02040. PubMed DOI

Sangani M.F., et al. Transport of engineered nanoparticles in soils and aquifers. Environ. Rev. 2019;27:43–70. doi: 10.1139/er-2018-0022. DOI

Xia T., et al. Co-transport of negatively charged nanoparticles in saturated porous media: impacts of hydrophobicity and surface O-functional groups. J. Hazard Mater. 2021;409 doi: 10.1016/j.jhazmat.2020.124477. PubMed DOI

Qi Z.C., et al. Transport of graphene oxide nanoparticles in saturated sandy soil. Environ. Sci.-Process Impacts. 2014;16:2268–2277. doi: 10.1039/c4em00063c. PubMed DOI

Zhao L., et al. Graphene oxide, a novel nanomaterial as soil water retention agent, dramatically enhances drought stress tolerance in soybean plants. Front. Plant Sci. 2022;13 doi: 10.3389/fpls.2022.810905. PubMed DOI PMC

Carneiro J.S.D., et al. Biochar-graphene oxide composite is efficient to adsorb and deliver copper and zinc in tropical soil. J. Clean. Prod. 2022;360:13. doi: 10.1016/j.jclepro.2022.132170. DOI

Kabiri S., et al. Graphene oxide: a new carrier for slow release of plant micronutrients. ACS Appl. Mater. Interfaces. 2017;9:43325–43335. doi: 10.1021/acsami.7b07890. PubMed DOI

Li T., et al. Chitosan and graphene oxide nanocomposites as coatings for controlled-release fertilizer. Water, Air, Soil Pollut. 2019;230:146. doi: 10.1007/s11270-019-4173-2. DOI

Mohammadi Alagoz S., et al. 2022. Impact on Nutritional Status of Plants Treated with Nanoparticles. in.

Juarez-Maldonado A., et al. Nanoparticles and nanomaterials as plant biostimulants. Int. J. Mol. Sci. 2019;20 doi: 10.3390/ijms20010162. PubMed DOI PMC

Lahiani M.H., et al. Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon. 2015;81:607–619. doi: 10.1016/j.carbon.2014.09.095. DOI

Arikan B., et al. Fe2O3-modified graphene oxide mitigates nanoplastic toxicity via regulating gas exchange, photosynthesis, and antioxidant system in Triticum aestivum. Chemosphere. 2022;307 doi: 10.1016/j.chemosphere.2022.136048. PubMed DOI

Sengupta S., et al. Adsorption of arsenic on graphene oxide, reduced graphene oxide, and their Fe3O4 doped nanocomposites. Biointerface Research in Applied Chemistry. 2021;12:6196–6210. doi: 10.33263/BRIAC125.61966210. DOI

Zhang Q., et al. Removal of heavy metals in aquatic environment by graphene oxide composites: a review. Environ. Sci. Pollut. Res. Int. 2020;27:190–209. doi: 10.1007/s11356-019-06683-w. PubMed DOI

Kulshrestha S., et al. Antibiofilm efficacy of green synthesized graphene oxide-silver nanocomposite using Lagerstroemia speciosa floral extract: a comparative study on inhibition of gram-positive and gram-negative biofilms. Microb. Pathog. 2017;103:167–177. doi: 10.1016/j.micpath.2016.12.022. PubMed DOI

Gurunathan S. Cytotoxicity of graphene oxide nanoparticles on plant growth promoting rhizobacteria. J. Ind. Eng. Chem. 2015;32:282–291. doi: 10.1016/j.jiec.2015.08.027. DOI

Chung H., et al. Effects of graphene oxides on soil enzyme activity and microbial biomass. Sci. Total Environ. 2015;514:307–313. doi: 10.1016/j.scitotenv.2015.01.077. PubMed DOI

Ge Y., et al. Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil. Environ. Sci. Technol. 2016;50:3965–3974. doi: 10.1021/acs.est.5b05620. PubMed DOI

Wang D., et al. Using graphene oxide to enhance the activity of anammox bacteria for nitrogen removal. Bioresour. Technol. 2013;131:527–530. doi: 10.1016/j.biortech.2013.01.099. PubMed DOI

Du J., et al. Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Adv. 2015;5:27009–27017. doi: 10.1039/c5ra01045d. DOI

Forstner C., et al. Effects of carbon nanotubes and derivatives of graphene oxide on soil bacterial diversity. Sci. Total Environ. 2019;682:356–363. doi: 10.1016/j.scitotenv.2019.05.162. PubMed DOI

Luo N., et al. Graphene oxide influences on bacterial community diversity of larix olgensis rhizosphere of haplic cambisols in northeast China. Eurasian Soil Sci. 2022;55:1470–1481. doi: 10.1134/S1064229322100106. DOI

Hammerschmiedt T., et al. Impact of smart combinations of graphene oxide and micro/nanosized sulfur particles on soil health and plant biomass accumulation. Chem. Biol. Technol. Agric. 2022;9:13. doi: 10.1186/s40538-022-00323-1. DOI

Yap P.L., et al. Tuning the multifunctional surface chemistry of reduced graphene oxide via combined elemental doping and chemical modifications. ACS Omega. 2019;4:19787–19798. doi: 10.1021/acsomega.9b02642. PubMed DOI PMC

Gupta V.K., et al. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq. 2015;208:122–129. doi: 10.1016/j.molliq.2015.04.032. DOI

Liu G., et al. Metal-organic framework preparation using magnetic graphene oxide-beta-cyclodextrin for neonicotinoid pesticide adsorption and removal. Carbohydr. Polym. 2017;175:584–591. doi: 10.1016/j.carbpol.2017.06.074. PubMed DOI

Zahedi S.M., et al. Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): a new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera L. cv Sultana) Plant Stress. 2023;7:10. doi: 10.1016/j.stress.2022.100128. DOI

Huang M., et al. Facile ball milling preparation of sulfur-doped carbon as peroxymonosulfate activator for efficient removal of organic pollutants. J. Environ. Chem. Eng. 2021;9 doi: 10.1016/j.jece.2021.106536. DOI

Jeon C., et al. Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar. J. Hazard Mater. 2020;388 doi: 10.1016/j.jhazmat.2020.122048. PubMed DOI

Yang X., et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J. 2019;366:608–621. doi: 10.1016/j.cej.2019.02.119. PubMed DOI PMC

Hammerschmiedt T., et al. The combined effect of graphene oxide and elemental nano-sulfur on soil biological properties and lettuce plant biomass. Front. Plant Sci. 2023;14 doi: 10.3389/fpls.2023.1057133. PubMed DOI PMC

Hammerschmiedt T., et al. Impact of smart combinations of graphene oxide and micro/nanosized sulfur particles on soil health and plant biomass accumulation. Chemical and Biological Technologies in Agriculture. 2022;9:53. doi: 10.1186/s40538-022-00323-1. DOI

ISO_10694 . International Organization for Standardization; 1995. Soil Quality - Determination of Organic and Total Carbon after Dry Combustion (Elemental Analysis)

ISO_13878 . International Organization for Standardization; 1998. Soil Quality - Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis)

Mehlich A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 2008;15:1409–1416. doi: 10.1080/00103628409367568. DOI

ISO_10390 . International Organization for Standardization; 2005. Soil Quality - Determination of pH.

Zbíral J. 2022. Jednotné Pracovní Postupy. Analýza Půd III. Ústřední Kontrolní a Zkušební Ústav Zemědělský.

ISO_20130 . 2018. Soil Quality — Measurement of Enzyme Activity Patterns in Soil Samples Using Colorimetric Substrates in Micro-well Plates.

Amann R.I., et al. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. PubMed DOI PMC

Vainio E.J., Hantula J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 2000;104:927–936. doi: 10.1017/s0953756200002471. DOI

Rotthauwe J.H., et al. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997;63:4704–4712. doi: 10.1128/aem.63.12.4704-4712.1997. PubMed DOI PMC

Ben-Dov E., et al. Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microb. Ecol. 2007;54:439–451. doi: 10.1007/s00248-007-9233-2. PubMed DOI

R_Core_Team . R Foundation for Statistical Computing; 2023. R: A Language and Environment for Statistical Computing.

RStudio_Team . 12.1 ed. RStudio, Inc; 2023. RStudio: Integrated Development for R.

Zar J.H. second ed. Prentice-Hall Internat; 1984. Biostatistical Analysis.

Pekár S., Brabec M. Masaryk University Press; 2016. Modern Analysis of Biological Data. Generalized Linear Models in R.

Lehr C.R., et al. Sulfur dynamics in wetland soils: the critical role of elemental sulfur. Environ. Sci. Technol. 2017;51:8371–8379.

Souri B., Sayadi Z. Efficiency of sulfur-bentonite granules to improve uptake of nutrient elements by the crop plant cultivated in calcareous soil. Commun. Soil Sci. Plant Anal. 2021;52:2414–2430. doi: 10.1080/00103624.2021.1928173. DOI

Zhao C., et al. Effects of pH and ionic strength on elemental sulphur oxidation in soil. Biol. Fertil. Soils. 2017;53:247–256. doi: 10.1007/s00374-016-1170-0. DOI

Jamialahmadi N., et al. Interaction of graphene oxide nano-sheets and landfill leachate bacterial culture. Environ. Technol. 2018;39:2457–2466. doi: 10.1080/09593330.2017.1356875. PubMed DOI

Quezada-Renteria J.A., et al. Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide. Carbon. 2019;149:722–732. doi: 10.1016/j.carbon.2019.04.109. DOI

Yang Z., et al. Effect of repeated applications of elemental sulfur on microbial population, sulfate concentration, and pH in soils. Commun. Soil Sci. Plant Anal. 2007;39:124–140. doi: 10.1080/00103620701759079. DOI

McTee M.R., et al. Restoring ecological properties of acidic soils contaminated with elemental sulfur. Sci. Total Environ. 2017;587:449–456. doi: 10.1016/j.scitotenv.2017.02.110. PubMed DOI

Bewley R.J.F., Parkinson D. Bacterial and fungal activity in sulphur dioxide polluted soils. Can. J. Microbiol. 1985;31:13–15. doi: 10.1139/m85-003. DOI

Gupta V.V.S.R., et al. vol. 68. 1988. (Impact of Elemental Sulfur Fertilization on Agricultural Soils. I. Effects on Microbial Biomass and Enzyme Activities).

Fang J., et al. Graphene oxide decreases the abundance of nitrogen cycling microbes and slows nitrogen transformation in soils. Chemosphere. 2022;309 doi: 10.1016/j.chemosphere.2022.136642. PubMed DOI

Forstner C., et al. Effects of graphene oxide and graphite on soil bacterial and fungal diversity. Sci. Total Environ. 2019;671:140–148. doi: 10.1016/j.scitotenv.2019.03.360. PubMed DOI

Joshi N., et al. Novel sulphur-oxidizing bacteria consummate sulphur deficiency in oil seed crop. Arch. Microbiol. 2021;203:1–6. doi: 10.1007/s00203-020-02009-4. PubMed DOI

Zebarth B.J., et al. Effect of soil acidification on nitrification in soil. Can. J. Soil Sci. 2015;95:359–363. doi: 10.4141/cjss-2015-040. DOI

Das P., et al. Impacts of graphitic nanofertilizers on nitrogen cycling in a sandy, agricultural soil. J. Nanoparticle Res. 2022;24 doi: 10.1007/s11051-022-05500-9. DOI

Wu C., et al. Adsorption of ammonium by graphene oxide-based composites prepared by UV irradiation and using as slow-release fertilizer. J. Polym. Environ. 2018;26:4311–4320. doi: 10.1007/s10924-018-1302-8. DOI

Danilov M., et al. Reduced graphene oxide: a promising electrode material for oxygen electrodes. Journal of Nanostructure in Chemistry. 2013;3:49. doi: 10.1186/2193-8865-3-49. DOI

Czaban J., Kobus J. Oxidation of elemental sulfur by bacteria and fungi in soil. Acta Microbiol. Pol. 2000;49:135–147. PubMed

Carniel F.C., et al. Graphene environmental biodegradation: wood degrading and saprotrophic fungi oxidize few-layer graphene. J. Hazard Mater. 2021;414(9) doi: 10.1016/j.jhazmat.2021.125553. PubMed DOI

Godlewska A. Assessment of the effect of NPK fertilisation and elemental sulphur on soil enzyme activity. Fresenius Environ. Bull. 2018;27:180–186.

Hammerschmiedt T., et al. Biochar and sulphur enriched digestate: utilization of agriculture associated waste products for improved soil carbon and nitrogen content, microbial activity, and plant growth. Agronomy-Basel. 2021;11:14. doi: 10.3390/agronomy11102041. DOI

Zhao Y.W., et al. Effects of sulfur fertilization on soybean root and leaf traits, and soil microbial activity. J. Plant Nutr. 2008;31:473–483. doi: 10.1080/01904160801895001. DOI

Song J., et al. Graphene oxide affects growth and physiological indexes in Larix olgensis seedlings and the soil properties of Haplic Cambisols in Northeast China. Environ. Sci. Pollut. Res. Int. 2021 doi: 10.1007/s11356-020-11972-w. PubMed DOI

Ye R., et al. Microbial response of a calcareous histosol to sulfur amendment. Soil Sci. 2011;176:479–486. doi: 10.1097/SS.0b013e31822769e7. DOI

Song J.F., et al. Effects of graphene on larix olgensis seedlings and soil properties of haplic cambisols in Northeast China. Forests. 2020;11:16. doi: 10.3390/f11030258. PubMed DOI

Malik K.M., et al. Organic amendments and elemental sulfur stimulate microbial biomass and sulfur oxidation in alkaline subtropical soils. Agronomy-Basel. 2021;11:18. doi: 10.3390/agronomy11122514. DOI

Yan C., et al. Iris pseudacorus as precursor affecting ecological transformation of graphene oxide and performance of constructed wetland. J. Hazard Mater. 2022;436 doi: 10.1016/j.jhazmat.2022.129164. PubMed DOI

Kelleher B.P., et al. Large perturbations in CO2 flux and subsequent chemosynthesis are induced in agricultural soil by the addition of elemental sulfur. Sci. Rep. 2017;7:4732. doi: 10.1038/s41598-017-04934-9. PubMed DOI PMC

Zhang H., et al. Adsorption and oxidation of SO2 by graphene oxides: A van der Waals density functional theory study. Appl. Surf. Sci. 2014;324 doi: 10.1016/j.apsusc.2014.10.087. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...