Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) analysis of human nails: Implications for age determination in forensics
Language English Country United States Media print-electronic
Document type Journal Article
- Keywords
- ATR FT‐IR, PLS‐DA, PLS‐R, age, chemometrics, nails,
- MeSH
- Discriminant Analysis MeSH
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Least-Squares Analysis MeSH
- Adolescent MeSH
- Young Adult MeSH
- Nails * chemistry MeSH
- Proof of Concept Study MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Forensic Sciences methods MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Aging MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
A person's age estimation from biological evidence is a crucial aspect of forensic investigations, aiding in victim identification and criminal profiling. In this study, we present a novel approach of utilizing Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy to predict the age of donors based on nail samples. A diverse dataset comprising nails from donors spanning different age groups was analyzed using ATR FT-IR, with subsequent multivariate analysis techniques used for age prediction. The developed partial least squares regression (PLS-R) model demonstrated promising accuracy in age estimation, with a root mean square error of prediction (RMSEP) equal to 11.1 during external validation. Additionally, a partial least squares discriminant analysis (PLS-DA) classification model achieved high accuracy of 88% in classifying donors into younger and older age groups during external validation. This proof-of-concept study highlights the potential of ATR FT-IR spectroscopy as a non-destructive and efficient tool for age estimation in forensic investigations, offering a new approach to forensic analysis with practical implications.
Department of Environmental Toxicology Texas Tech University Lubbock Texas USA
Department of Natural Drugs Faculty of Pharmacy Masaryk University Brno Czech Republic
See more in PubMed
Kayser M, Forensic DNA. Phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet. 2015;18:33–48. https://doi.org/10.1016/j.fsigen.2015.02.003
Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA‐a review. Forensic Sci Int Genet. 2010;4(3):148–157. https://doi.org/10.1016/j.fsigen.2009.09.007
Sagar G. Nail as evidence in forensic toxicology. International Medico‐Legal Reporter Journal. 2021;8:99–106.
Cappelle D, Yegles M, Neels H, van Nuijs A, De Doncker M, Maudens K, et al. Nail analysis for the detection of drugs of abuse and pharmaceuticals: a review. Forensic Toxicol. 2015;33:12–36. https://doi.org/10.1007/s11419‐014‐0258‐1
Daniel CR, Piraccini BM, Tosti A. The nail and hair in forensic science. J Am Acad Dermatol. 2004;50(2):258–261. https://doi.org/10.1016/j.jaad.2003.06.008
Grover C, Bansal S. The nail as an investigative tool in medicine: what a dermatologist ought to know. Indian J Dermatol Venereol Leprol. 2017;83(6):635–643. https://doi.org/10.4103/ijdvl.IJDVL_1050_16
Lach M. Nailing the gold standard. Adult & Child Newsletters. 2015;6. Accessed 02 Oct 2024 https://usdtl.my.salesforce.com/sfc/p/#j0000001pVKp/a/5b000000o3fB/c9q9yh0R293hStiJSM39tXihvgN3W4wiKdTXoTiExdI
Solimini R, Minutillo A, Kyriakou C, Pichini S, Pacifici R, Busardo FP. Nails in forensic toxicology: an update. Curr Pharm Des. 2017;23(36):5468–5479. https://doi.org/10.2174/1381612823666170704123126
De Berker D, André J, Baran R. Nail biology and nail science. Int J Cosmet Sci. 2007;29(4):241–275. https://doi.org/10.1111/j.1467‐2494.2007.00372.x
Baran R. The nail in the elderly. Clin Dermatol. 2011;29(1):54–60. https://doi.org/10.1016/j.clindermatol.2010.07.008
Dawber R, Baran R. Nail growth. Cutis. 1987;39(2):99–103.
Forslind B. Biophysical studies of the normal nail. Acta Derm Venereol. 1970;50(3):161–168.
Gniadecka M, Nielsen OF, Christensen DH, Wulf HC. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J Invest Dermatol. 1998;110(4):393–398. https://doi.org/10.1046/j.1523‐1747.1998.00146.x
Heid HW, Moll I, Franke WW. Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues II. Concomitant and mutually exclusive synthesis of trichocytic and epithelial cytokeratins in diverse human and bovine tissues (hair follicle, nail bed and matrix, lingual papilla, thymic reticulum). Differentiation. 1988;37(3):215–230. https://doi.org/10.1111/j.1432‐0436.1988.tb00805.x
Ohgitani S, Fujita T, Fujii Y, Hayashi C, Nishio H. Nail calcium and magnesium content in relation to age and bone mineral density. J Bone Miner Metab. 2005;23:318–322. https://doi.org/10.1007/s00774‐005‐0606‐7
Cirimele V, Kintz P, Mangin P. Detection of amphetamines in fingernails: an alternative to hair analysis. Arch Toxicol. 1995;70(1):68–69. https://doi.org/10.1007/BF03035462
Mitu B, Cerda M, Hrib R, Trojan V, Halámková L. Attenuated total reflection Fourier transform infrared spectroscopy for forensic screening of long‐term alcohol consumption from human nails. ACS Omega. 2023;8(24):22203–22210. https://doi.org/10.1021/acsomega.3c02579
Mitu B, Trojan V, Halámková L. Sex determination of human nails based on attenuated total reflection Fourier transform infrared spectroscopy in forensic context. Sensors (Basel). 2023;23(23):9412. https://doi.org/10.3390/s23239412
Arruda AB, Talarico AS, Santos FBC, Costa A. Changes in nails caused by aging. In: Miller FM, editor. Skin, mucosa and menopause. Berlin/Heidlberg, Germany: Springer; 2015. p. 163–172. https://doi.org/10.1007/978‐3‐662‐44080‐3_13
Muro CK, Doty KC, Bueno J, Halámková L, Lednev IK. Vibrational spectroscopy: recent developments to revolutionize forensic science. Anal Chem. 2015;87(1):306–327. https://doi.org/10.1021/ac504068a
Weber A, Hoplight B, Ogilvie R, Muro C, Khandasammy SR, Pérez‐Almodóvar L, et al. Innovative vibrational spectroscopy research for forensic application. Anal Chem. 2023;95(1):167–205. https://doi.org/10.1021/acs.analchem.2c05094
Pedrosa M, Curate F, Batista de Carvalho LAE, Marques MPM, Ferreira MT. Beyond metrics and morphology: the potential of FTIR‐ATR and chemometrics to estimate age‐at‐death in human bone. Int J Legal Med. 2020;134(5):1905–1914. https://doi.org/10.1007/s00414‐020‐02310‐3
Leskovar T, Jerman I, Zupanič PI. Unveiling intra‐skeletal variability in mature and immature human skeletal remains via ATR‐FTIR spectroscopy. Vib Spectrosc. 2024;132:103688. https://doi.org/10.1016/j.vibspec.2024.103688
Yu K, Xiong H, Wei X, Wu H, Zhang B, Wang G, et al. Chronological age estimation of male occipital bone based on FTIR and Raman microspectroscopy. Bioinorg Chem Appl. 2022;2022:1729131. https://doi.org/10.1155/2022/1729131
Doty KC, Lednev IK. Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes. ACS Cent Sci. 2018;4(7):862–867. https://doi.org/10.1021/acscentsci.8b00198
Giuliano S, Mistek‐Morabito E, Lednev IK. Forensic phenotype profiling based on the attenuated total reflection Fourier transform‐infrared spectroscopy of blood: chronological age of the donor. ACS Omega. 2020;5(42):27026–27031. https://doi.org/10.1021/acsomega.0c01914
Balki I, Amirabadi A, Levman J, Martel AL, Emersic Z, Meden B, et al. Sample‐size determination methodologies for machine learning in medical imaging research: a systematic review. Can Assoc Radiol J. 2019;70(4):344–353. https://doi.org/10.1016/j.carj.2019.06.002
Geladi P, Kowalski BR. Partial least‐squares regression: a tutorial. Anal Chim Acta. 1986;185:1–17. https://doi.org/10.1016/0003‐2670(86)80028‐9
de Jong S. SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst. 1993;18(3):251–263. https://doi.org/10.1016/0169‐7439(93)85002‐X
Janik LJ, Cozzolino D, Dambergs R, Cynkar W, Gishen M. The prediction of total anthocyanin concentration in red‐grape homogenates using visible‐near‐infrared spectroscopy and artificial neural networks. Anal Chim Acta. 2007;594(1):107–118. https://doi.org/10.1016/j.aca.2007.05.019
Rutledge D, Roger J‐M, Lesnoff M. Different methods for determining the dimensionality of multivariate models. Front Analytical Sci. 2021;1:754447. https://doi.org/10.3389/frans.2021.754447
Næs T, Isaksson T. Selection of samples for calibration in near‐infrared spectroscopy. Part I: general principles illustrated by example. Appl Spectrosc. 1989;43(2):328–335. https://doi.org/10.1366/0003702894203129
Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the analysis of high‐dimensional genomic data. Brief Bioinform. 2007;8(1):32–44. https://doi.org/10.1093/bib/bbl016
Wold S, Ruhe A, Wold H, Dunn WJ III. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput. 1984;5(3):735–743. https://doi.org/10.1137/0905052
Barton PM. A forensic investigation of single human hair fibres using FTIR‐ATR spectroscopy and chemometrics [dissertation]. Brisbane, Australia: Queensland University of Technology; 2011.
Coroaba A, Pinteala T, Chiriac A, Chiriac AE, Simionescu BC, Pinteala M. Degradation mechanism induced by psoriasis in human fingernails: a different approach. J Invest Dermatol. 2016;136(1):311–313. https://doi.org/10.1038/JID.2015.387
Cardinal LJ. Diagnostic testing: a key component of high‐value care. J Community Hosp Intern Med Perspect. 2016;6(3):31664. https://doi.org/10.3402/jchimp.v6.31664
Saeedi P, Shavandi A, Meredith‐Jones K. Nail properties and bone health: a review. J Funct Biomater. 2018;9(2):31. https://doi.org/10.3390/jfb9020031
Baran R, Dawber RP, De Berker DA. The nail in childhood and old age. In: Baran R, Dawber RP, de Berker DA, Haneke E, Tosti A, editors. Baran and Dawber's diseases of the nails and their management. Hoboken, NJ: John Wiley & Sons; 2008. p. 104–128. https://doi.org/10.1002/9780470694947.ch3
Karadag AS, Parish LC, Wang JV. Roxburgh's common skin diseases. 19th ed. Boca Raton, FL: CRC Press; 2022. p. 298–309. https://doi.org/10.1201/9781003105268
Rao S, Banerjee S, Ghosh SK, Gangopadhyay DN, Jana S, Mridha K. Study of nail changes and nail disorders in the elderly. Indian J Dermatol. 2011;56(5):603–606. https://doi.org/10.4103/0019‐5154.87174
Loo DS. Cutaneous fungal infections in the elderly. Dermatol Clin. 2004;22(1):33–50. https://doi.org/10.1016/s0733‐8635(03)00109‐8
Weinberg JM, Vafaie J, Scheinfeld NS. Skin infections in the elderly. Dermatol Clin. 2004;22(1):51–61. https://doi.org/10.1016/s0733‐8635(03)00107‐4
Gupta AK, Stec N, Summerbell RC, Shear NH, Piguet V, Tosti A, et al. Onychomycosis: a review. J Eur Acad Dermatol Venereol. 2020;34(9):1972–1990. https://doi.org/10.1111/jdv.16394
Van De Kerkhof PC, Pasch MC, Scher RK, Kerscher M, Gieler U, Haneke E, et al. Brittle nail syndrome: a pathogenesis‐based approach with a proposed grading system. J Am Acad Dermatol. 2005;53(4):644–651. https://doi.org/10.1016/j.jaad.2004.09.002
Brosche T, Dressler S, Platt D. Age‐associated changes in integral cholesterol and cholesterol sulfate concentrations in human scalp hair and finger nail clippings. Aging (Milano). 2001;13(2):131–138. https://doi.org/10.1007/BF03351535
Yadav A, Nimi C, Bhatia D, Rani N, Singh R. Estimation of age and sex from fingernail clippings by using ATR‐FTIR spectroscopy coupled with chemometric interpretation. Int J Legal Med. 2024. https://doi.org/10.1007/s00414‐024‐03275‐3
Refn MR, Kampmann ML, Morling N, Tfelt‐Hansen J, Børsting C, Pereira V. Prediction of chronological age and its applications in forensic casework: methods, current practices, and future perspectives. Forensic Sci Res. 2023;8(2):85–97. https://doi.org/10.1093/fsr/owad021
Koop BE, Reckert A, Becker J, Han Y, Wagner W, Ritz‐Timme S. Epigenetic clocks may come out of rhythm—implications for the estimation of chronological age in forensic casework. Int J Legal Med. 2020;134(6):2215–2228. https://doi.org/10.1007/s00414‐020‐02375‐0
Irving RC, Dickson SJ. The detection of sedatives in hair and nail samples using tandem LC‐MS‐MS. Forensic Sci Int. 2007;166(1):58–67. https://doi.org/10.1016/j.forsciint.2006.03.027
Sihota P, Yadav R, Dhiman V, Bhadada S, Mehandia V, Kumar N. Investigation of diabetic patient's fingernail quality to monitor type 2 diabetes induced tissue damage. Sci Rep. 2019;9(1):3193. https://doi.org/10.1038/s41598‐019‐39951‐3
Towler MR, Wren A, Rushe N, Saunders J, Cummins NM, Jakeman PM. Raman spectroscopy of the human nail: a potential tool for evaluating bone health? J Mater Sci Mater Med. 2007;18(5):759–763. https://doi.org/10.1007/s10856‐006‐0018‐9
From Spectra to Signatures: Detecting Fentanyl in Human Nails with ATR-FTIR and Machine Learning